
Initiative to Apply Java

to Automotive Control Systems
February 2000

Automotive Control Systems Today

Today vehicles include an increasing number of
electronics systems. It has been estimated by
Dataquest that the average semiconductor content of
a vehicle will reach $240 by 2001, with
consumption of DSPs, microcontrollers and
microprocessors reaching $4.9 billion. Typical
configurations consist of interconnected Electronic
Control Units (ECUs) which may be connected
through several buses. One possible bus is the
“entertainment/infotainment” bus which connects
subsystems such as radio, telephone, and navigation.
Another one is the control bus which connects
ECUs such as the ABS, the engine control, or the
transmission control subsystem. A vehicle such as
the Volvo S80 includes “18 ECUs connected via six
networks: a low-speed body electronics CAN bus
(125kbit/s), a high-speed powertrain CAN bus
(250kbit/s), and four other networks.”

ECUs are part of an embedded system market which
is very fragmented since it ranges from systems
based on 4 bit microcontrollers (e.g. a light switch)
to 128 bit processors (e.g. game consoles). Today 4
to 16 bit microcontrollers make up the bulk of the
market in terms of volume (around $10 billion per
year or higher), while 32 bit and higher systems
count for less than 10% of the market. It is however
expected that 32 bit systems will expand at a much
higher rate than 16 or 8 bit microcontrollers.

Most ECUs in the automotive control systems
market are currently 8 to 16 bit systems. An
increasing number of 32 bit systems will be
included in the next generation of vehicles, but for
cost and reliability reasons, such systems are likely
to be designed using single chip or system on a chip
approaches. This implies significant constraints in
acceptable memory footprints.

ECUs often have to deal with duty cycles of several
ms. Engine control subsystems for instance have to
manage the engine cycle which has a duration that
depends on the round per minute (RPM). At 6000
RPM, the engine cycle is 20 ms, which means that
the ECU has to handle timing constraints on the
order of several ms. In addition, ECUs exchange
control data through the bus. The exchange period

can be as low as several ms. The CAN bus is a
typical type of control bus currently in use. Note
that in many cases, engineering decisions made by
OEMs may add further real-time constraints, such as
the implementation of a serial link or a multiplexing
link by software to lower cost.

ECUs are typically designed and developed by
OEMs according to requirements set up by car
manufacturers. Such requirements include a detailed
description of expected interfacing capabilities, and
in particular a detailed description of data
transmitted to the ECUs or to be transmitted by the
ECUs. In many cases, OEMs are not informed of
the entire vehicle message system, as the car
manufacturer may wish to protect trade secrets.

Until quite recently OEMs had in most cases total
freedom in the design of ECUs, including the
software, the processor and the hardware. However
car manufacturers now anticipate a need to provide
very precise requirements, in particular at the
software level. There is a trend toward the
specification of more global functions made
possible by the networking and multiplexing
capabilities of today’s vehicles, for example an
automatic gear shift function could sit partly in the
transmission control ECU and partly in the engine
control ECU. Thus a car manufacturer may wish to
subcontract an OEM for the development of only
the software component (e.g. the global gear shift
function or the part sitting in the engine control) or
for the production of an incomplete ECU (e.g. the
engine control part without the automatic gear shift
part). This approach not only allows the
implementation of global functions, but it can also
further protect the car manufacturers trade secrets.

To address this trend, the automotive industry is
looking for technologies that will facilitate the
software development integration process. It has
identified the need to provide guidance on the
transition towards advanced electronic
architectures in the following ways:

• Pushing from the start for the definition of open
systems, with the definition of corresponding
interfaces (APIs). This has allowed the
definition of the OSEK/VDX standard

A
N

N
O

U
N

C
E

M
E

N
T

AJACS - Applying Java to Automotive Control Systems

(www.osek-vdx.org), probably the most
successful undertaking concerning RTOS
standardization in the software industry today.
Currently there are more than 10 different
OSEK/VDX providers and many more
proprietary implementations from car
manufacturers and OEMs.

• Pushing for the use of advanced software
engineering methods, such as OMT and UML,
and approaches promoting software reuse, such
as object-oriented programming.

Java could be the cornerstone technology on which
the infotainment bus could be built. The AMIC
initiative (www.ami-c.com) on multimedia
interoperability, created in October 1998 by five
leading manufacturers (GM, Ford, DaimlerChrysler,
Toyota, Renault) which now includes all car
manufacturers, is investigating an open technology
in the multimedia area based on Java.

On the other hand, Java has not yet been considered
for automotive control systems because of
technology issues, like memory footprints and real-
time.

The AJACS Initiative
AJACS (Applying Java to Automotive Control
Systems) is a two-year project partially funded by
the European Commission. Its objective is to
specify, develop and demonstrate an open
technology allowing the use of Java in deeply
embedded automotive ECUs such as engine control
systems.

An open technology is being defined that will:

• rely on existing standards of the automotive
industry, in particular OSEK/VDX,

• fully retain the benefits expected from object
oriented language programming in terms of
software structuring, reusability, dependability,

• fully retain the WORA (Write Once Run
Anywhere) and robustness attributes associated
with Java,

• support the same kind of real-time constraints
which non Java based ECUs currently handle,

• target the type of electronic configurations that
are in use in the industry: 16 and 32 bit
microcontrollers and memory footprints
ranging from 64 Kbytes to several hundred
Kbytes (ROM) for the whole system.

Mechanisms and APIs are being defined to:

• support typical standards of automotive control
systems, e.g. specific APIs for diagnosis,
communication, and network management,
support the OSEK/VDX standard, and coexist
with OSEK/VDX based applications written in
C,

• conform to future Java deeply embedded
standards and Java real-time standards,

• address typical timing constraint issues for
automotive control systems,

• address programming language issues such as

• memory management issues (e.g. garbage
collection, persistent objects),

• synchronization issues (e.g. priority
inversion),

• support for asynchronous external events
(e.g. support of interrupt handlers in Java),

• support for asynchronous thread
notification,

• address distributed communication and
multiplexing needs (e.g. use of CAN,
subsystem management),

• allow for the right level of CPU performance
(e.g. native code generation), and allow the
development of device drivers in Java.

AJACS work will is being carried out in close
collaboration with currently available specification
efforts (Java Community Process, J consortium,
OSEK/VDX).

The partners of the AJACS project are:

• Trialog (OSEK/VDX technology provider)
• PSA (car manufacturer)
• CRF (technology center for Fiat, car

manufacturer)
• Mecel (technology center for Delphi,

equipment manufacturer)
• University of Karlsruhe.

AJACS project duration: 2 years.
Starting date: February

 Java is a trademark of Sun Microsystems

AJACS Project Manager: Antonio Kung, Trialog
25 rue du Général Foy, 75008 Paris, France

Tel: +33 1 44 70 61 00
Fax: +33 1 42 94 80 64

e-mail: antonio.kung@trialog.com
www.trialog.com

Software Engineering Focused on
Embedded Systems Technology

