,\ . AJACS - Applying Java to Automotive Control Systems
Arcs Y Final Report - Concluding Paper V2.0

IST Programme

1IST-1999-12504

AJACS
Applying Java to Automotive

Control Systems

“AJACS Concluding Paper”

Technical Paper
Version 1.0

Editors : Xavier Cornu, Antonio Kung. Trialog

July 2002

|ST-1999-12504 © consortium AJACS 2002 Page 1/75

,\ . AJACS - Applying Java to Automotive Control Systems
Arcs Y Final Report - Concluding Paper V2.0

1.

11
12
13
14
15

2.1 INTRODUCTION .coiueirireeseesetsetsssssessssssessessessssssssssssssssssssssessessessesssssssssssssasssssessassessassesssssssssssssassassessassessessesssssessssanses 6
22 THE CASE OF AUTOMOTIVE CONTROL APPLICATIONS....cuiiuiietretsstsstsssssssssnsssesssnsns 7
221 Automotive Control Systems Today
222 The OSEK/VDX INITTALIVE ..c.cecirieireecieieieisei ettt

3. PROGRAMMING LANGUAGES. ...ttt s s 11

31 THE PROGRAMMING LANGUAGE C....cocovvriireterisieteisesie e ssssssssesssss st sssssssssssssssssssssssssessssssssessssassessssasses
32 MAIN CHARACTERISTICS OF OBJECT ORIENTED LANGUAGES
33 THE CASE OF JAVA ..ottt st s et se bbb b s s et sss bt sss sttt ss bt s s as b bt s bbb s s an bt s s anbes s anantas
34 APPLYING JAVA TO REAL-TIME ..ooiitetitsieeteseessetesse st sssss s s ssssssssesssss s bt ssssssssssssssssssssssssssesssssassesssnsassessssanses
341 TheReal-TimeCore..................
342 SUNREAI-TIME .ottt ettt bbb bbbt bbbttt st bbbt bbbttt b bbbt ettt ettt ettt et tetane

4. JAVA FORREAL-TIME SYSTEMS

41 JAVA FOR DEVELOPMENT OF EMBEDDED SYSTEMS....ceueuiieeesessessssssssssssessesssssssssssssssssssssssssessessesssssssssnees 13
St R = T 0ot o] = OO
4.1.2 Intended Usein Embedded Systems
4.1.3 ReCOMMENUALIONS.......cccveiieririeirereeie sttt ssssssssessnans

4.2 REAL-TIME SUPPORT ..cvutuitreeseesstsssssssssessesssssssssssessssssssssassessesssssssssssssssssssasssssassesssssssssssssssssssssssssssessessessssssssnsnees
St R = 1 0ot o] =TT
4.2.2 Intended Usein Embedded Systems
0 T = (= o0 140 41= 1 F= LA o 31T

4.3 SUPPORT OF EXCEPTION....iusitsitieseeseeseseessessesssssssesssssssssssssessessssssssssssssessssssssssassessesssssssssssssssssssssssssessessessssssssnsnnes
50 R = T 0ot o] =TT
4.3.2 USeIN EMDEAIEI SYSIEMS.....cceccereccte ettt s et es s ssaen
4.3.3 Recommendations

A4 INITIALISATION cooceveeeereseeseeseeseessssesssssssessessesssssssssssessssssssssessessessssssssssssssessssassassassessessssssssssssssssssssssssessessesssssnssnsnees
Nt R = T 0ot o] =TT
4.4.2 Intended Usein Embedded Systems
443 Recommendations..........cccoo....

45 MEMORY MANAGEMENT
St R o T 0ot o] =TT

45.2 Intended Usein Embedded Systems
453 Recommendations
46 NATIVE INTERFACE

A.6.1 PriNCIPIES .ottt st a s

4.6.2 Intended Usein Embedded Systems

0 T = (= o0 140 41= 1 F= LA o 31T
5. LESSONSLEARNED, RECOMMENDATIONS.......cccotntirierirrienirnisessisisssessssns 73
6. REFERENCES.......cootiitritriieiieensieesss st sss st ssssse s sss st sttt et s sss st s b as st s s s s bbb sn s st st ssessesnnes 75

|ST-1999-12504 © consortium AJACS 2002 Page 2/75

AJACS - Applying Java to Automotive Control Systems
Final Report - Concluding Paper V2.0

1.

Introduction

1.1 Scope and Expected Readers

The objective of this document is to provide a technica analysis of the issues of using Java’ for
embedded red-time systems, with a particular focus on embedded satic systems such as
automotive eectronic control unit and to provide a set of recommendations.

Because this document is intended for two different types readers : Java programmers who get
involved into Embedded Systems programming, and Embedded systems programmers who are
moving to the Java programming language, we have decided to include in the document suitable
introduction sections on ether Java or on red-time systems.

1.2 Context of AJACS project

The success of Javain theindustry, and the increasing interest of the redl-time community to use
it, led this consortium to condder an investigation on the use of Java technology in automotive
control gpplications :

Through its object-orientation, Java makes it easy to desgn software component with
drictly defined interfaces, even at the source code levd. Methodologies like OMT and
UML can be adopted with little effort.

The Java language is designed to be platform independent. Thus hardware independence
and portability requirements are largdy fulfilled.

Easiness and robustness attributes contribute to high programmer productivity and low
defect rates. This will hep the devdopment team focus on hightlevd activities like
component-based design.

To thisend, the AJACS initiative” was Sarted in February 2000 with the following objectives:

Define an open technology which rdlies on exiging standards of the automotive industry,
such as OSEK/VDX.

Retain the benefits expected from object-oriented language programming in terms of
software gtructuring, reusability, dependability in paticular retan the portability, and
robustness attributes associated with Java

Address technica issues created by drawbacks of the Java language in terms of red-time
and determinism support for embedded systems with high integrity condraints. In the case
of automoative contral, this means supporting the same kind of red-time congraints which
non-Java based ECUs currently handle and targetting the type of memory footprints that
are acceptable in the automotive industry (e.g. 256 Kbytes ROM, 16 Kbytes RAM).

1
2

Javaisatrademark of Sun Microsystemsin the United States and in other countries
AJACSincludes Trialog, PSA, Centro Fiat Riserche, Mecel AB, U.Karlsruhe/IPD. AJACSis partially funded by the European

Commission.

|ST-1999-12504 © consortium AJACS 2002 Page 3/75

AJACS - Applying Java to Automotive Control Systems
Final Report - Concluding Paper V2.0

1.3 Content of Document

This document includes the following sections:

Thisintroduction section
An introduction section on embedded systems and on automotive control systems
An introduction section on programming languages
An anays's section covering the following topics:
- Javafor development of embedded systems
Real-time support
Support of exception
Initidization
Memory management
Native interface

Each of these topics is treated in terms of principles, intended use in embedded systems,
and recommendetions

Lessons learned

* References
1.4 Glossary

API Application Programming Interface

CPU Centrd Processing Unit

ECU Electronic Control Unit

HIP High Integrity Profile

HIPA High Integrity Profile for Automotive control

JMM JavaMemory Modd

VM Java Virtud Machine

OSEK/VDX Offene Systeme und deren Schnittstellen flr die Elektronik in Kraftfahrzeug
(Open systems and the corresponding interfaces for automotive eectronics) /
Vehicle Digtributed eXecutive.

OMT Object Modeling Technique

ROM Read-Only Memory

RTOS Redl-Time Operating System

UML Unified Modding Languege

|ST-1999-12504 © consortium AJACS 2002 Page 4/75

,\ . AJACS - Applying Java to Automotive Control Systems
Arcs Y Final Report - Concluding Paper V2.0

1.5 Acknowledgement

AJACS was partidly funded by the European Commission.

Wewould like to thank in particular Tom Clausen, project officer of the Commisson aswell as
Alan Perbost from Thomson-CSF and Karl-Heinz Krause from Semens. They provided us
with many va uable comments and suggestions.

We would aso like to thank the J consortium which provided us with many technical support in
AJACS work towards a high integrity profile specification for automotive control applications.
Kevin Nilsen from Newmonics, chairman of the Technical committee of the J consortium
reviewed an initid verson of the document and provided many invauable comments. We have
included mogt of his commentsin this report.

We findly would like to thank the OSEK-VDX committee which provided us with guidance on
how the AJACS project should proceed in terms of standardization.

|ST-1999-12504 © consortium AJACS 2002 Page 5/75

,\ N AJACS - Applying Java to Automotive Control Systems
Arcs Y Final Report - Concluding Paper V2.0

2. Embedded Systems

2.1 Introduction

Embedded systems can be defined as follows [Gupta02]

"An embedded system employs a combination of hardware & software (a
"computational engine") to perform a specific function; is part of a larger system
that may not be a "computer"; works in a reactive and time-constrained
environment. Software is used for providing features and flexibility. Hardware (e.g.
Processors, AS Cs, Memory,...} is used for performance and sometimes security.”

Embedded systems exhibit the following typica characterigtics [Gupta02]:

they perform a single or tightly knit set of functions (they are not usually "general
purpose”),

they are increasingly high-performance & real-time constrained,

power, cost and reliability are often important attributes that influence design”

Finaly embedded systems are very diverse[Gupta02] provide the following examples:

a pocket remote control RF transmitter would have the following specific
attributes
100 KIPS crush-proof, long battery life
Softwar e optimized for size
An industrial equipment controller would have the following specific attributes
1 MIPS, safety-critical, 1 MB memory
Software control loops
A military signal processing system would have the following specific attiibutes
1 GFLOPS 1 GB/sec 10, 32 MB

Automoative electronics can exhibit the same diversity from engine control, ABS, dashboards
which are very condrained to navigaion sysem which would include severa megabytes

memory.

Embedded systems are dso sometimes categorized according to whether they are closed/static
systems versus open/dynamic systems. In closed/dtetic systems, al computing resources are
predetermined (in terms of threads, memory, and so forth). This is often a characteristics or
even a requirement of high integrity applications (such as avionics, automotive or space
applications). Closed/Static systems alow for memory footprint optimization and therefore cost
optimization for two reasons :

because all memory resources are predetermined, no extra memory space is needed
because dl entities are predetermined, significant amount of data can be put in ROM
ingead of RAM. ROM is much chegper than RAM : atypicd single chip configuration
could contain 64kbytes ROM and 1kbyte RAM.

|ST-1999-12504 © consortium AJACS 2002 Page 6/75

,\ N AJACS - Applying Java to Automotive Control Systems
Arcs Y Final Report - Concluding Paper V2.0

Typicaly used programming languages today for the development of embedded systems are

Assembler. Still many embedded systems are il written in assembler, not for lack of
computing experience and know-how, but manly for cost reasons. In many
applications where software complexity is still smal, sticking to assembler dlow the use
of cheaper components

C. Most automotive control eectronics are now written in C. The change took place
about 10 years ago when the complexity of such systems increased significantly.

Adais used in many complex embedded systems such as military gpplications, avionics
and space gpplications. Ariane launcher software in written in Ada.

2.2 The Case of Automotive Control Applications

2.2.1 Automotive Control Systems Today

Today vehicles include an increasing number of eectronics systems. It has been estimated by
Dataquest that the average semiconductor content of a vehicle will reach $240 by 2001, with
consumption of DSPs, microcontrollers and microprocessor reaching $4.9 hillion. Electronic
control unitsor ECUs now play a crucid part in dl the functiona aress of a vehicle such as
infotainment / multimedia (e.g. radio system, road guidance, cdlular phone), body control (e.g.
ingrument panel, window lift, automatic door lock), or vehicle contral (e.g. engine management,
transmission, brakes).

This was made possble through the advent of networking technology such as CAN. Typica
vehicles consgt of severd interconnected networks that more or less reflect distinct functiona
aress. For ingtance, the Volvo SB80 includes «18 ECUs connected via Sx networks. a low-
speed body eectronics CAN bus (125kbit/s), a high-speed powertrain CAN bus (250kbit/s)
and four other networks».

ECUs are typically designed and developed by OEM's according to requirements set up by car
manufacturers. Until recently, each ECU was dedicated to a sngle user-function (e.g. climate
control) and OEMs had entire freedom for the implementation (hardware and software). Car
manufacturers now try to introduce more flexible development processes that support the
breskdown of the user function into fine-grain sub-functions with very precise requirements, in
paticular & the software level. Two examples of such breskdown (“Display speed” and
“Cruise Control” user functions) are presented in Figure 1. At some point in the development
process, the resulting sub-functions will be mapped to the hardware subsystems, the ECUS, that
form the physica architecture (see Figure 2). The intent of the car manufacturer is tha the
functiona specification and the physica architecture design tasks can be carried on in pardld
with definite synchronization points (the tentative physicd alocations of sub-functions).

|ST-1999-12504 © consortium AJACS 2002 Page 7/75

5 AJACS - Applying Java to Automotive Control Systems

ARCS\Y Final Report - Concluding Paper V2.0
System Input
Wheel Sensor System Output
‘\ N Speedometer
.

Measure Display
Speed \ Display Speed User Function”_ Value
\ Read
Cruise Control CC button 1

User Function

Data Flow
Vehicle Speed

Sub-function
Engine control

Figure 1 - Example of User Functions

The car manufacturers expect many benefits of such a development process : having more
control on the specification of the user functions, protecting trade secrets by keeping some
crucid sub-functions under their only control, reducing development duration and reducing the
resulting bill of materias for the vehicle dectronics.

>
o)
n

I nstrument Cluster

Display

Value
Read

cC button

Cruise Engine
Control Control

Powertrain |

Figure2 - Example of Physical Allocation

Reaulting from this trend, the relationship between car manufacturers and OEMs is thus arting
to change. OEMs may be subcontracted for the development of software components only

|ST-1999-12504 © consortium AJACS 2002 Page 8/75

,\ N AJACS - Applying Java to Automotive Control Systems

ARCS Y Final Report - Concluding Paper V2.0

-

(eg. an entire user function, or dl the sub-functions gtting in the engine control ECU). Or
OEMs may be subcontracted for the provison of an “incomplete ECU”, that is an hardware
and software platform on which sub-functions can be further added by the car manufacturer or
some third-party (eg. the engine control ECU without the sub-functions related to autometic
gear shift).

From a different perspective, the OEMs dso seek for a more flexible development
process. Many of them try to set up generic hardware and/or software platforms that would
fulfill dl the generd requirements for a particular functional domain (eg. climate contral) ; the
intent is that a large range of products can be easly and chegply derived from these generic
platforms by a quick tailoring to the specific requirements of each individua project. At the
software leve, such generic platforms usudly rely on a definite set of fine-grained components
that can be interconnected in various ways, depending on the actua requirements to be fulfilled.

To address the trend towards advance e ectronic architectures, the whole industry has identified
the need to provide guidance on the trangtion towards advanced dectronic architectures. It has
been pushing from the dat for the definition of open sysems with the definition of
corresponding interfaces (APIs) as in the OSEK/VDX (1) initiative presented below. It has
aso been pushing for the use of advanced software engineering methods (such as OMT,
UML), and gpproaches promoting software reuse (such as object-oriented programming).

2.2.2 The OSEK/VDX Initiative

OSEK, an abbreviation for the German term “Offene Systeme und deren Schnittsdllen fir die
Elektronik in Kraftfahrzeug™®, is a joint project started in 1993 by the German automotive
industry. Initid project patners were BMW, Bosch, Damler-Benz, Opd, Semens,
Volkswvagen and the IIIT of the Universty of Karlssuhe as co-ordinator. French car
manufacturers Peugeot and Renault joined OSEK in 1994 introducing their VDX-gpproach
(“Vehicle Didributed Executive’) which was a Smilar project within the French automotive
industry. The firg results of the harmonization effort were presented by the OSEK/VDX group
in 1995.

An 1SO submission process sarted in early 2000 for the latest release of the specifications. As
of today, OSEK/VDX is probably the most successful undertaking concerning standardization
in the embedded software industry: there are more than 10 different providers of OSEK/VDX
components and many more proprietary implementations from car manufacturers and OEMSs.

The scope of the OSEK/VDX specificationsincludes :

» OSEK/OS, a specification of behavior and APIs for a red-time operating system that
makes provision for the execution and synchronization of gpplication tasks and interrupt
routines.

= QOSEK/COM, a specification of APIs and network protocols that supports exchange of

% English translation is “ Open Systems and the Corresponding I nterfaces for Automotive Electronics’.

|ST-1999-12504 © consortium AJACS 2002 Page 9/75

AJACS - Applying Java to Automotive Control Systems
Final Report - Concluding Paper V2.0

data messages between software components, ether through local communication (i.e. the
transmitter and the receiver are located on the same ECU) or through a network.
OSEK/NM, a specification of APIs and protocols that serve as a basis for network wide
negotiated management functions. Badicdly, it supports a distributed monitoring scheme for
the ECUs, thus dlowing a particular sub-function to be informed about the current
avalahility of the other sub-functionsit relies on.

OSEK/OIL, alanguage to describe the configuration of a particular software component
or of a complete application. This configuration includes for ingtance the definition of the
operating system tasks, as well as the description of the messages to be received and/or
transmitted.

OSEK/VDX provides a standard architecture for distributed control units in vehicles. It meets
the two stringent automotive requirements we have previoudy mentioned: redl-time support and
small footprints. Thisisreflected in OSEK/VDX characteritics:

It is a gatic system. All entities are known and declared in advance. Furthermore, dl data
sructures within OSEK/VDX are defined and initidized daticaly using the OIL language.

For instance a task descriptor contains information such as a starting address or priority
which are gatic. Such information is stored in ROM and not in RAM. In order to bring

some flexibility, the notion of mode management is dso defined. Applications may switch
from one mode to another. This switch involves the initidization of the whole system to

another set of predefined objects.

Many OSEK/VDX-based applications are interrupt intensive gpplications. As a matter of

fact, some of them could be entirely interrupt-oriented. This is why OSEK has defined the

notion of basic tasks or entities which can be considered as logicd interrupts.

Many applications need to react to cyclic events, dthough not periodic. This is the case of

engine control. OSEK provides services for associating events with a flexible notion of

counters, which could be a timer counter or any type of counter (eg. an event from a
Sensor).

Because of the wide range of gpplications to be supported, the technology offers a number

of options. basic tasks (logica interrupt routines) or extended tasks (Sandard tasks with
waiting states), preemption or not, multiple activation or not of the same task.

A common mutuad exclusion service with PCP (Priority Ceiling Protocol) is supported for

basic tasks and extended tasks.

Extended tasks may wait for events. Events are thus associated with configurations of

extended tasks.

IST-1999-12504 © consortium AJACS 2002 Page 10/75

,\ N AJACS - Applying Java to Automotive Control Systems
Arcs Y Final Report - Concluding Paper V2.0

3. Programming Languages

3.1 The Programming Language C

The C programming language was devised in the early 1970s as a sysem implementation
language for the nascent Unix operaing system. Derived from the type-less language BCPL, it
evolved atype structure; crested on atiny machine as atool to improve ameager programming
environment, it has become one of the dominant languages of today .

Besdes its high levd type system, it benefits from its low level operators. This dlowed
programmers to implement agorithms in a very efficent way and ill keep the dgorithmsin a
portable format. UNIX systems and itstools are written in C.

Especidly the possbility to write low level programs, which can access the hardware directly,
open the door to embedded systems.

A norma C programmer focuses on the implementation of agorithms and the control-flow of
the program.

3.2 Main Characteristics of Object Oriented Languages

In contrast to imperative languages, like C, the programmer focuses on data-structures and the
implementation of methods which trandform the data-structure in object-oriented languages.
Furthermore the programmer has a closer look on the interactions and dependencies of his
data-dtructures, e.g. inheritance. This introduces a new way to describe the dgorithm and its
data-structures. The dgorithm is implemented by the combination of such data-transformation
methods.

Such data-structures and methods are grouped in classes. An instance of every classes can be
created and is cdled object. Classes can have ainheritance rdation. If aclass C inheritsfrom a
class D, then it inherits dl is data-structures and its data-transformations (e.g. class Human
inherits from class Mammad). But the new class can overwrite methods to adept the behavior of
an ingance

As a conseguence, object-oriented languages have a very complex type sysem (aHuman is a
Mammal), which make a method call complex. If a method is called to transform some data-
dructure of an ingance, then it could be possble that this indance is a subclass with a
overwritten method. A so called polymor phic method invocation must be performed.

3.3 The Case of Java

The programming language Java is a combination of the former two points. It combines some
syntecticad properties of the language C with the features of an object-oriented language.

|ST-1999-12504 © consortium AJACS 2002 Page 11/75

,\ . AJACS - Applying Java to Automotive Control Systems
)

AILCS Y Final Report - Concluding Paper V2.0

Besdes thisit clamsto be: smple, distributed, interpreted, robust, secure, architectura neutral,
portable, high- performant, multi-threaded and dynamic.

Mogt such clams are guaranteed by the definition of a Java Virtud Machine (WM). A
program, which is written in Java, shdl behave on every platform in the same way, aways.
Every Java Program is compiled into Java Byte Code, which is interpreted and executed by the
VM.

3.4 Applying Javato Real-Time

3.4.1 The Real-Time Core

The Redl-Time Core, created by members of the J-Consortium, defines a platform for the use
of Javain ared-time environment [Red-Time Core Specification]. The main issue of the Red-
Time Core definition is to guarantee the portability of Core application software and to ensure
the compdtibility between implementations of Core developments tools and run-time
environments.

To digtinguish between the standard Java and the redl-time variant the former is called baseline
Javaand the |atter oneis called Core, in short. Both variants exists Smultaneoudy. But the redl-
time variant's root-class is not the class Object, but the class CoreObject. Therefore,
development tools like compilers have to take case of this fact by replacing the class Object by
the class CoreObject (root-class replacement).

Furthermore it defines an environment in which a core gpplication runs. To this environment
bel ongs the execution modd, the memory model and a core-class hierarchy.

3.4.2 Sun Real-Time

The Sun Red-Time specification is another officid specification for developing red-time
gpplications with the Java platform [RTJS]. The Red-Time Specification for Java (RTSJ) is a
reference to the semantics, extensons, and modifications to the Java programming language.

The RTSJ shdl enable the creation, verification, analyds, execution, and management of code
written for the Java platform for which the correctness conditions, timeliness, and execution
predictability are paramount.

This specification provides programmers with the ability to modd applications and program
logic that require predictable execution which meets hard real-time congraints.

|ST-1999-12504 © consortium AJACS 2002 Page 12/75

,\ N AJACS - Applying Java to Automotive Control Systems
Arcs Y Final Report - Concluding Paper V2.0

4. Java for Real-Time Systems

This section covers the following topics:

Javafor development of embedded systems
Real-time support
Support of exception
Initidization
Memory management
Native interface
For each of these topics, we have included the following sections:

A section explaining the principse

The intended use in embedded systems. This section will explain the issues and do ligt
possible solutions

A recommendation section

4.1 Javafor Development of Embedded Systems

4.1.1 Principles
4.1.1.1 Java Development environment

Root Classes and Sandard Libraries

As an object oriented language, al programming entities are described as classes and objects
(i.e. ingtantiation of classes). There is in the language a minima set of "root” classes. These
clases are defined in the j ava. | ang package : Obj ect, Cl ass, String ad
Thr owabl e. These classes are called "root" classes because they are the smallest subset of
Java classes that can exist without dependencies. Each of the root classes depend on other root
classes, but not of any other class.

As most programming environments, Java Virtua Machines are not delivered with the support
of root classes only. A sat of libraries (ak.a. packages in Java), that helps the programmer
perform basic operations such as printing functions, thread management, basc exception
classes and so forth is aso provided.

Even though JVMs are developed by competitors, the most frequent set of library used is from
Sun Microsystems. There are a least two reasons for this : first the investment to redevelop
dandard libraries is important. Second implementing its own library could lead to
incompatibilities.

When Sun microsystems library is used, then this will involve a licenang agreement with the
VM developer whereby the VM developer is not dlowed to change the APIs. The rationale
behind this congraint is to ensure portability of Java applications.

IST-1999-12504 © consortium AJACS 2002 Page 13/75

,\ . AJACS - Applying Java to Automotive Control Systems
Arcs Y Final Report - Concluding Paper V2.0

Pre-processing
Many programming languages and especidly C have a pre-processng phase which alow
progranmersto :

= define condants
= define macros
= define conditiona compilation of source file blocks

Java has no such facilities.
Remarks from Kelvin Nilsen : while Java has no such facilities, capabilities for (a) defining constants, (b)
defining macros, and (c) defining conditional compilation of source blocks can be provided by typical Java
implementations. In particular,

aconstant can be defined by using the final qualifier in the declaration, asin:

final bool ean Verbose_Debug_Info = true;

Most of what a C programmer would want to accomplish with macros can be achieved by writing static

or final methods. Almost al compilers will in-line the implementation of these methods if they are
sufficiently small, asin:

static void DebugCutput(java.lang. String nsg) {
if (Verbose_Debug_I nfo)

Systemout. println("DEBUG " + nBgQ);

Java compilers are good enough to conditionally compile code that is easily shown to be dead at
compile time. Given the two bodies of Java code shown above, the following line translates into zero
machine code;

DebugQut put ("trace nessage, value of X " + X);

Debugging

Debugging facilities for Java today are mostly for execution on host systems (PCs, or work
dations). For instance Sun Microsystems VM implementation comes with a debugger tool,
cdled j db. It dlows the programmer to debug Java application ether localy on the host or
remotely through socket communication.

4.1.1.2 System Programming
Java was not intended for system programming.

|ST-1999-12504 © consortium AJACS 2002 Page 14/75

,\ N AJACS - Applying Java to Automotive Control Systems
Arcs Y Final Report - Concluding Paper V2.0

4.1.2 Intended Use in Embedded Systems
4.1.2.1 Development environment

Root Classes

[Redl-time Core Specification] explains that the semantics of the root classes as defined in the
Java language cannot be kept as they do not meet requirements of red-time systems. For
example, some services like wai t () and noti fy() have to be redefined in origind
Obj ect dass they rely on Javathread mode which is not suitable for Red-Time.

Severd gpproaches have been identified :

= Change the semantics of the root classes. This approach is suited to embedded systems
which only contain classes and objects that are red-time

» Define new root clases (CoreObject, CoreCl ass, CoreString ad
Cor eThr owabl e) which coexig with (Obj ect, Class, String ad
Thr owabl e). Therefore the red-time part of an gpplication should use core classes
while the non red-time pat of an gpplication can ick to sandard root classes. The
rationale behind is that by supporting both new root classes and standard root classes, it is
possible to reuse standard Java applications. Having new additiona root classes raise
however a mgor technicd issue : dl dasses inheit from Obj ect not from
Cor eObj ect . [Red-time Core Specification] has proposed a "root replacement”
mechanism whereby Obj ect, Cl ass, String and Thr owabl e ae actudly
replaced by Cor eObj ect, Cor eCl ass, CoreStri ng and Cor eThr owabl e
respectively. A tool could be used to replace the classes somewhere in the compilation
chain. The compiler front-end could perform internaly al the subditutions of the root
classes.

Sandard Libraries

The standard library contains hundred of classes. Even though only needed classes are loaded,
in practice, usng one Java class in the standard library often implies using dl the library. Thisis
because standard Java classes may themsdlves use other classes of the library. For instance if
Sun microsystems standard library is used then using just one class would then mean that
severd hundred standard classes need to be downloaded. This is an issue in embedded
systems in terms of memory footprints. This means that sandard libraries are often discarded
and replaced by target-dependent libraries.

Pre-processing

Not being able to define constants, macros (or to have controlled in-lining capailities) or define
conditiona compilation of source file block is an issue in most embedded systems where low
memory footprints is a congdraint.

Debugging

IST-1999-12504 © consortium AJACS 2002 Page 15/75

,\ . AJACS - Applying Java to Automotive Control Systems
ARCS Y Final Report - Concluding Paper V2.0

-

Debugging in embedded systems is either done through a smulator (i.e. a software that smulate
the ingtruction set of the target processor) or through and emulator (i.e. a hardware systems
which replaces a target processor and executes ingruction set in red-time). It is therefore
necessary that debugging support be provided for such environments. In the case of emulators
for embedded systems, there are either proprietary or semi-standard interfaces alowing
emulators to provide source code level debugging. Such interfaces congsts of map files with
explain the correspondence between each line of source code and the target code.

Java development environments should support the following :

= Provison of Map files. If Java bytes code is interpreted, then there is a risk that map files
cannot be used because they would map the target code to the source code of the VM,
not to the Java application
» Trace-ability :
= If naive compilers generate C, then the map files will provide the correspondence
between target code and the generated C source code. Then tracing back to the Java
source code is not straightforward.
= |f direct target code is generated, then there might till be traceability issues as some
Java construct might generate complex patterns of code

4.1.2.2 System Programming

Lacking Features

Embedded systems gpplications imply significant amount of sysem programming. This is not
obvious in Java because of the following :

No constants (in the sense of C)
No macros (unless the underlying Java compiler provides controlled in-lining capability)
No unsigned types

Lack of support for bit management. Below isatypical C example of the handling of events
represented as bits. The counterpart in Java could yield significantly more code because of
bit operators would have to be replaced by method calls.

IST-1999-12504 © consortium AJACS 2002 Page 16/75

. AJACS - Applying Java to Automotive Control Systems
Arcs Y Final Report - Concluding Paper V2.0

/* Event Waiting */
Wait Event (lgnitionOn | IgnitionOff | GearShift);

/* Event Testing */

Event Mask recei ved;

Get Event (Taskl, &received);

if (received & IgnitionOn) {.}

/* Event Setting */
Set Event (Task2, IgnitionOn | Val ueRequest);

» Thereisno support of interrupt routines. Extensions proposed are the following :

[Redl-Time Core Specification] introduces the notion of Interrupt Service Routines
throughthe | SR_Task class. When an interrupt is triggered, dl the work() methods
of | SR_Task objects registered as handlers for this interrupt are run one &fter the
other (in adecreasing priority order).
[RTJS introduces the notion of Asynchronous Events handlers with the
AsyncEvent Handl er : when an Asynchronous Event occurs, dl the run()
methods of the registered AsyncEvent Handl er regisered as handlers for the
corresponding AsyncEvent object are called.

1/O Management

Lack of sygem programming capabilities will make it difficult to deveop 1/0 basd
gpplications. 1/0 management in C typicaly conssts in using bit structures. A 8-bit /O port of
the micro-controller is represented by a char variable placed a the address of the
corresponding register. The code to write in such a variable looks as follows:

#defi ne REG FOO *((unsigned char *)0x12345678) // Address found in CPU
dat asheet
REG FOO = 42; // directly wite the value in the register

The Java language does not provide a means to represent directly aphysicd entity (no notion of
physical address), so the only possibility is to use the Java Native Interface: the programmer
creates an accessor function to access the physicd variable in the C code. This make the
previous example look as follows in Java

IST-1999-12504 © consortium AJACS 2002 Pege 17/75

AJACS - Applying Java to Automotive Control Systems
Final Report - Concluding Paper V2.0

}

class Register8 {

class Application {

i nt address = 0x12345678; // beware of sign

Regi ster8(int addr) { this.address = address; }

void wite(byte value) { // beware of sign
native_write (address, value);

}

static native void native_wite(int address, byte value);

Regi ster8 REG FOO = new Regi st er 8(0x12345678) ;
REG FOO. write(42);

With the corresponding native function:

JNI EXPORT void JNI CALL Java_Regi ster8 native wite

jint address,

(JNI Env *env,

j byte val ue

) |

*((jbyte *)address) = val ue;

This results in a much less efficient, as this solution implies a function cal (and then cosly
operations). This even gets worse when accessing physica data which have a sze of one bit as
programs will often use masks to access the bit in one logica operation, such as the following:

REG FOO | = 0x04; // sets bit 3 to 1 |

The resulting Java code would look like:

byte tenp;

tenp = REG FOO. read();
tenp | = 0x04;

REG FOO. write(tem);

It is possible to improve this by creating whole set of accessorgmodifiers as follows:

native static void or_mask(int address, byte mask);
/1 which will performthe follow ng C code:

*((jbyte *)address) |= mask;

But the result is not convenient.

Note that [Real-Time Core Specification] addressed these issues by defining some specific APIs to alow
1/Osin Java. Thisbrings several advantages :

The Java APlIs are"safer" than raw C code. Some checking is performed when the programmer "opens’
the IOPort to make sure the requested range of 1/O addresses is accessible to the programmer. This
prevents errant pointer access to arbitrary memory locations.

The Java APIs have higher performance in that (i) these avoid the overhead of JNI method calls, (ii) the
compiler will typicaly in-line their implementation, and (iii) the compiler will typically optimize the code
of the surrounding context to make most efficient use of registers, to make use of common

IST-1999-12504 © consortium AJACS 2002 Page 18/75

,\ . AJACS - Applying Java to Automotive Control Systems
Arcs Y Final Report - Concluding Paper V2.0

subexpressions, and to eliminate redundant copying of information. Java compilers can do none of this
with INI calls because the compiler is unable to analyze the content of the NI functions. It must
assume worst-case interference between Java and C components.

It is believed that an appropriate implementation of the real-time core 1O port APl would perform as fast as
the C code shown.

4.1.3 Recommendations

4.1.3.1 Development environment

It is recommended that

= embedded dtatic systems change the semantics of the root classes
» gandard library isnot used

= apreprocessor be available

= debugging interface with suitable features be available

4.1.3.2 System Programming

Extensons a the leve of the programming language or fegtures a the level of the compiler
should be provided to support congtants, macros or in-lining, unsigned types, bit management,
interrupt management and 1/0O management.

4.2 Real-Time Support

4.2.1 Principles
4.2.1.1 Multithreading in Java

Definition

The definition of athread in Javaisthe same asin RTOS. A thread is a sequence of code which
executes concurrently to others. Threads can possibly share underlying system resources such
as files, as well as accessing other objects declared within the same program. Every program
consgts of at least one thread - the one that runs the main method of the class provided as a
gartup argument to the Java virtua machine ("JVM"). Other interna background threads may
aso be started during VM initidization. The number and nature of such threads vary across
VM implementations. However, al user-level threads are explicitly declared and started from
the main thread, or from any other threads that they in turn creste.

The standard way to create a thread from a user program congists in writing classes that extend
theclasscdled Thr ead, and to implement ar un() method which represents the thread as
showed below :

IST-1999-12504 © consortium AJACS 2002 Page 19/75

AJACS - Applying Java to Automotive Control Systems
Final Report - Concluding Paper V2.0

}

cl ass AppThreadl extends Thread {
public void run() {

/1 code to be executed in a separate thread

The fact that thread entities are directly managed by the language leads to better portability,
because of the independence to the underlying RTOS framework that is used. In contrast using
C in generd impliesthe direct use of the underlying RTOS services. Therefore portability would
depend on the RTOS API gtatus (in particular using OSEK-VDX AP would ensure portability
of automotive applications).

Threads are assigned a priority, but here is what the Javatutoria states concerning their use:

“At any given time, the highest priority thread is running. However, this is not
guaranteed. The thread scheduler may choose to run a lower priority thread to avoid
starvation. For this reason, use priority only to affect scheduling policy for efficiency
purposes. Do not rely on thread priority for algorithm correctness.”

The consequenceis that standard Java does not support real-time systems.

4.2.1.2 Synchronization

Synchronization is needed when two concurrent entities of more run concurrently access shared
resources, in particular shared variables. Such entities could be software threads or hardware
interrupt routines.

The following example shows how a shared resource can be accessed concurrently using the
synchr oni zed keyword.

cl ass SharedData {
synchroni zed void Access() {

}

Synchronization is not atrivid issue. Consder the following example, taken from [Lea 96-99]

IST-1999-12504 © consortium AJACS 2002 Page 20/75

AJACS - Applying Java to Automotive Control Systems

Final Report - Concluding Paper V2.0

final class SetCheck {
private int a = 0;
private long b = 0;
void set() {
a = 1
b = -1;
}
bool ean check() {
return ((b == 0) |
(b==-1 &% a ==1));
}
}
In the case where there is only one thread in the program, executing the method check will
awaysreturn true :
» dther bisequd to zero
* orbegua -1andaequd 1.
In the case severd threads accessing the methods, there could be potential problems. For
example the compiler may rearrange the order of the statements, so b may be assigned before
a Thisis alowed and would not change the semantics of the program in the single thread case.
The following could then happen
Thread 1
a=2=0
b=20
call set
b = -1 (conpiler rearranged the code)
Thread 1 is preenpted and Thread 2 is schedul ed
Cal |l check
At this point b == -1, a == 0 so check return fal se

There are many cases where the compiler, the memory system, the processor behave in a non
expected way that could cause the example to have an eroneous behavior if the
synchr oni zed keyword is not used. For instance::

The memory system (as governed by cache control units) may rearrange the order in which
writes are committed to memory cells corresponding to the variables. These writes may
overlap with other computations and memory actions.

The compiler, processor, and/or memory system may interleave the machine-level effects of
the two statements. For example on a 32-bit machine, the high-order word of b may be
written first, followed by the write to a, followed by the write to the low-order word of b.

IST-1999-12504 © consortium AJACS 2002

Page 21/75

AJACS - Applying Java to Automotive Control Systems
Final Report - Concluding Paper V2.0

4.2.2

= The compiler, processor, and/or memory system may cause the memory cells representing
the variables not to be updated until sometime after (if ever) a subsequent check is caled,
but ingtead to maintain the corresponding vaues (for example in CPU regigters) in such a
way that the code il has the intended effect.

Intended Use in Embedded Systems

4.2.2.1 Response Time Predictability

Redl-time systems must meet specified deadlines for the operations they are running in response
to externa events. In order to achieve this, each of the services which are observable to the
user are assigned a maximum response time. For example: when designing the emergency brake
of atrain, one will specify the maximum time between when the handle is pulled and the moment
peed decreases to say 100 milliseconds.

The consequence is that each individua mechanism of the system must in turn execute within a
predictable time. This applies to services performed by the underlying RTOS. This gpplies to
the activation of interrupt routine (i.e. interrupt latency). This dso gpplies to mechanisms which
have a far reaching impact on the overdl behavior such as the scheduling policy or
synchronization mechaniams. There are two specific mechanisms in Java which have equdly far
reaching impact, garbage collection and dynamic inheritance.

Garbage Collection

Most VMs maintain a heap to store al objects created by an executing Java program. Objects
are created through Java new operator, which causes memory to be dlocated for them in the

heap.

Garbage collection is the process of automatically freeing objects that are no longer referenced
by the program. The god of this feature is for the programmer to get rid of the respongbility of
tracking al objects and decide for each of them when they should be freed. The term “garbage
collection” means that objects that are no longer needed by an agpplication are “garbage’” and
should be thrown away. It is a bresk from the usud C progranmer’s habit to use
mal | oc/f r ee sarvices.

A garbage collector is a component integrated into a VM. It is responsible for:

= tracking al objects that are no longer referenced by the application: that means they cannot
be used anymore

» making available the hegp space that was used for storing these no longer referenced
objects

It should be noticed that the VM specification does not give detail on the garbage collector
except that it must be present in a norma implementation. Consequently, severd garbage
collector dgorithms exist on the market. They are more or less efficient depending on the
application type. A desktop VM will require overdl time performance, avoiding memory
leaks, even if sometimes the user will have to wait seconds before the garbage collection ends

|ST-1999-12504 © consortium AJACS 2002 Page 22/75

,\ . AJACS - Applying Java to Automotive Control Systems
Arcs Y Final Report - Concluding Paper V2.0

up, wheress a red-time application will require amore predictable agorithm that in particular
can be interrupted when needed without corrupting the hesp.

Garbage collection is a crucid issue for red-time systems. It is necessary to guarantee that the
garbage collection mechanism can run without provoking unpredictable overhead. A typica
gpproach condgts in running the garbage collection as a low priority task so that it can be
preempted when a high priority task has to run. But thisis not sufficient as the high-priority task
may be precisaly in the process of alocating memory thet is not available.

Lots of research have been carried out to cover for such cases. But to our knowledge only a
few products offer red-time gabage collection (Perc from Newmonics (see
www.newmonics.com) or Jamaica from Aicas (see www.aicas.com)). We actudly have no
information on return of experience from applications based on such garbage collection
schemes.

Dynamic Inheritance

Because of the object orientation of Java, a mechanism for virtual method cdl, i.e. invoking the
right method in the inheritance scheme is condantly activated. Here is an example.

class A {
void foo() {
}

}

class B extends A {

void foo() {
}
}
A ol = new A();
B 02 = new B();
oL = 02
Ol.foo(); // which method is called?

Red-time systems expect O(1) dgorithms for inheritance schemes.

Remarks from Kelvin Nilsen : Most implementations he is aware of implement the inheritance scheme in
O(12). On the other hand, interface invocation is a little more complicated, but that also can be done in O(1)
time (NewM onics has such an implementation in PERC).

4.2.2.2 Synchronisation

The Java Memory Model is not Suitable

The Java Memory Modd (Chapter 17 of the [Java Language Specification]) defines an
abgiract relation between threads and main memory. Every thread is defined to have aworking

IST-1999-12504 © consortium AJACS 2002 Page 23/75

,\ N AJACS - Applying Java to Automotive Control Systems

ARCS Y Final Report - Concluding Paper V2.0

-

memory (an abstraction of caches and regigters) in which to store values. The model guarantees
afew properties surrounding the interactions of instruction sequences corresponding to methods
and memory cdlls corresponding to fields. Mogt rules are phrased in terms of when values must
be transferred between the main memory and per-thread working memory. The rules address
three intertwined issues.

= Atomicty.
Which indructions must have indivishble effects. For purposes of the modd, these rules
need to be stated only for smple reads and writes of memory cells representing fields -
indance and datic variables, adso including array dements, but not including loca
variablesingde methods.

» Vighility.
Under what conditions the effects of one thread are visble to another. The effects of
interest here are writes to fields, as seen viareads of those fields.

* Ordeing.
Under what conditions the effects of operations can gppear out of order to any given
thread. The main ordering issues surround reads and writes associated with sequences
of assgnment statements.

Regarding synchronization, the solution derived from the Java Memory Modd is to use
condgently thesynchr oni zed keyword, which ams to smplify the characterisation of al
the properties above: dl changes madein one synchr oni zed method or block are atomic
and visible with respect to other synchr oni zed methods and blocks employing the same
lock, and processing of synchr oni zed methods or blocks within any given thread is in
program-specified order.

The problem is that this model, when applied srictly, can lead to serious speed inefficiency
because threeds are congtantly calling mutua exclusion mechanism.

William Pugh (Univ. of Maryland) [Pugh] raised problems concerning the Java Memory Mode
(IMM) as described in [Java Language Specification]. Those problems are mainly related to an
ambiguous presentation of the problem of ordering described previoudy. He suggests to
describe a new Java Memory Mode with more explicit and consstent rules that both alow
legitimate aggressive optimization and prevent programmers from writing unsafe programs too
eadly. This propodgtion contains, among other definitions, an extended semantics of
synchroni zed andvol at i | e keywords.

This new modd will not be discussed further in this document.

Typical Synchronization Practicesin Embedded Systems

Embedded systems typicdly use various synchronization mechanism. This section describes
them. OSEK/OS service names are used but equivalent services can be found in other RTOS.

The following terminology will be used :
* a ddinction is made between implict versus explicit synchronization. Implicit

|ST-1999-12504 © consortium AJACS 2002 Page 24/75

,\ . AJACS - Applying Java to Automotive Control Systems
Arcs Y Final Report - Concluding Paper V2.0

synchronization hgppens when an underlying non visible synchronization mechanism is used
asaresult of the use of a programming language congtruct.

= A memory barrier indicates an ingruction for which dl the ingructions Stuated before in
the code will be executed before, and dl the ingtructions Situated after in the code will be
executed after.

Here are the possible approaches
= Explicit synchronization : Locks on sections of code

Two sarvices, Get Resour ce and Rel easeResour ce ae used to respectively
lock and unlock a section. They dlow the explicit synchronization of blocks of ingtructions.
Sections that are locked on the same resource cannot be running Smultaneoudy, the first
task that gets the resource will be guaranteed exclusvity of this until the resource is
released. This technique is used in most conventiona systems based on preemptive
multitasking (i.e. dl tasks are preemptible and schedulable at any time).

= Explicit synchronization: Locks on sections of code involving interrupt routines

Two sarvices, Di sabl el nt errupt and Enabl el nt er r upt are used. They are
when a thread and interrupt routines need to access critical sections concurrently

= Implicit synchronization: Read/Write atomic data
Certain types of actions can be congdered as "aomic”, following the IMM:

» accesstobyt e,short,int,and referencetypes.
» accessto variablesdeclared withthevol at i | e modifier.

This means that reading or writing one of these variables is one single indivisble action.
When a thread writes a value in such a variable, a concurrent threed reading this variable
cannot reed an intermediate vaue of this variable. The vaue can only, depending on the
timing, be the old vaue (before the write) or the new vaue (after the write).

This feature is a very limited means of synchronization (only for a Sngle action on asmple
variable) but is commonly used by red-time applications programmers in C. It is not an
possible gpproach if the IMM is not changed as no guarantee is given regarding the order in
which datais accessed.

= Implicit synchronization: Non-preemptive programming

Many embedded systems programmers have been using non-preemptive operating systems
for years as abads for writing multithread applications with avery smdl footprint. In a non-
preemptive thread, a synchronized access to two related variables would be something like

IST-1999-12504 © consortium AJACS 2002 Page 25/75

,\ . AJACS - Applying Java to Automotive Control Systems
Arcs Y Final Report - Concluding Paper V2.0

foo() {
X 65;

y =0;

Schedul e();

X = 60;

y =5;

Schedul e();

The function above modifies twice the vaue of (x,y), but we can be sure that the execution
of this function will never let the posshbility of another thread to see another vadue than
(65,0) or (60,5). Because this other thread can be executed only when scheduling has
been dlowed by this thread.

It is typicd that when non preemptive scheduling is used for synchronization then the
Cet Resour ce/LeaveResour ce savices are not necessary.

= Adhoc synchronisation

In this gpproach, gpplication use an explicit mechanism and an associated access discipline.

A well-known example of these techniques is the use of events or flags for synchronization.
Consder two tasks T1 and T2 accessing a shared resource (memory):

shared
1 resource 3

2 T2
Y1 reader

1: Writeinresource
2 : SendEvent : "Y ou can access the resource”
3 : Read the resource

4 : SendEvent : "Resourceisread, you can change it"

Figure 3: Resource sharing

The naturd implementation of this scheme is the following:

T1() {
write_operations();
SendEvent (T2, AccessPer m ssi on);
ot her _operations();

IST-1999-12504 © consortium AJACS 2002 Page 26/75

AJACS - Applying Java to Automotive Control Systems
Final Report - Concluding Paper V2.0

T2() {

int i
Wai t Event (AccessPer m ssi on);
read_operations();

SendEvent (T1, AccessPer m ssi on);
ot her _works();

:1;

Synchronization Practices Applicable in Java

Explicit synchronization: Locks on sections of code

Locks on sections of code is achievable through the synchr oni zed congruct in Java
When an RTOS is used, the Get Resour ce and Rel easeResour ce saies are
used to implement the semantics of synchr oni zed. This means that the Java run-
time must make the right call to the RTOS services to reserve alock resource.

As a matter of fact, [Java Language specification] does not provide suitable semantics for
this type of implementation. One of the reasonsisthat the synchr oni zed smanticsis
based on a not suitable thread model which, for example, does not provide a valid priority
management: no warranty can be made whether a system will block or not, no fegture like
priority inverson can be provided. As a result a different specification of the semantics of
the synchroni zed keyword is required. This was achieved in [Red-Time Core
Specification).

Explicit synchronization: Locks on sections of code involving interrupt routines

The very notion of interrupts does not exis in the Java language. Therefore some
mechanisms must be made available :

The approach to have Java threads cdling the Di sabl el nterrupt ad
Enabl el nt er r upt services surprisingly does not work. Thisis because Java and
its underlying JIMM does not guarantee that a section of code located between two
cdls(eg. Di sabl el nterrupt and Enabl el nt errupt) will be executed
in between the two cdls. As a matter of fact a Java compiler is dlowed to reorder the
code and execute portions of code that are placed after Di sabl el nt er r upt
before the cdl to this service, with the obvious consequence that this cal does not
protect the desired actions anymore. A solution to thisissue is to find a way to specify
to the compiler that both services are barriers for optimizations.
Ancther possihility isto reusethe synchr oni zed congtruct which would then be
trandated into sutable cdls to Di sabl el nt errupt and
Enabl el nt er r upt . But then the congtruct is used for two types of locks (based
on Get Resource / LeaveResource and Disablelnterrupt /
Enabl el nt er r upt respectively). This necessitates a mechanism to specify to the
compiler/run-time which serviceit should use.

Implicit synchronization: Read/Write atomic data

IST-1999-12504 © consortium AJACS 2002 Pege 27/75

,\ . AJACS - Applying Java to Automotive Control Systems
A]A(B{YE Final Report - Concluding Paper V2.0

As dated this gpproach is not possble unless the JIMM is changed so that possble
reordering of code cannot be performed by the compiler, or unless compilers not taking
advantage of these reordering capabilities are used.

= Implicit synchronization: Non-preemptive programming

Smilaly to drect cdls to lock savices (eg Get Resource,
Di sabl el nterrupt) the direct use to a Schedul e sevice to achieve
synchronization is not possible with the current IMM. Again this means that the compiler
would have to be informed that Schedul e isabarier.

Another approach would condst in usng the synchroni zed or vol atile
congtruct. Again if such congtructs are used in different context with different lock services,
then a mechanism specify to the compiler/run-time which service it should use would be
necessary.

= Adhoc synchronization

Such mechanisms are not possible again because of the IMM. The problem of possble
reordering of ingtructions could change the intended behavior. If we consider the example
above:

» InT1, the ot her _operati ons() can be executed before SendEvent (),
butthewri t e_oper ati ons() must not be executed after SendEvent () .

= In T2, the i =1 indruction can be executed after WAi t Event () whereas
read_operati ons() must not be executed before\Wai t Event () .

This could be solved if there is a posshility to specify to the compiler tha the
Wai t Event and SendEvent sarvicesare memory barriers.

4.2.3 Recommendations
4.2.3.1 Predictability

Garbage Collection

It is recommended not to use garbage collection until some experience has been accumulated.
More andysisisprovidedin 4.5.

Dynamic Inheritance

Thisissueis not specific to Java. It is generd to the use of object oriented language for red-time
systems. We therefore recommend

= tofollow guiddines such asto limit deep hierarchies

= to vaidate method search dgorithms

= to follow return from experience in the use of object oriented languages in red-time
systems.

IST-1999-12504 © consortium AJACS 2002 Page 28/75

AJACS - Applying Java to Automotive Control Systems
Final Report - Concluding Paper V2.0

4.2.3.2 Synchronisation

It is recommended to reassess the Java Memory Modd first and adopt a more adapted modd.

Once asuitable modd is available then the following is suggested :

» Usethesynchr oni zed congruct to provide locking sections between threads
= Usethe same congruct to provide locking sections involving interrupt routines
» Guarantee atomic updates of some basic types.

4.3 Support of Exception

4.3.1 Principles

4.3.1.1 Introduction

Exceptions are widely used programming language entities. They dlow programmers to dedl
with unexpected Stuations in generd. Exceptions as in Java are very Smilar to those defined in
other programming languages such as Ada or C++.

In Java, three main keywords are used :

» try isused to define the block where an exception can occur : within the block defined by
thet ry keyword, and within any procedure called from the block (nested cals).

= cat ch is usad to define portion of code associated with the block caled exception
handlers

= t hr ows isusedto signa the occurrence of exceptions.

The example below shows a block which cdls a method C. Met hodX. C. Met hodX
contains code which raises exception Except i onX. This causes the execution flow to
branch to the caich clause.

try {

}

C. Met hodX() ;

catch(ExceptionX e) { ...}
finally { ...}

voi d Met hodX throws ExceptionX {

t hrow new ExceptionX();

As shown in the example, throwing an exception often includes the creetion of a Java object,
ingance of a subclass of j ava. | ang. Thr owabl e. This object is used to contain
information on the exception, describing for instance the cause of the exception.

IST-1999-12504 © consortium AJACS 2002 Page 29/75

,\ . AJACS - Applying Java to Automotive Control Systems
)

AILCS Y Final Report - Concluding Paper V2.0

4.3.1.2 Description

To amplify the further discussion, some technica terms are defined:

A datement (a block, a procedure) the execution of which can result in an exception being
thrown is cdled afragile statement (block, procedure).

If the execution of afragile statement (block, procedure) ends in an exception being thrown, the
statement (block, procedure) is said to complete abruptly. Abrupt completion of a statement
(block, procedure) causes an immediate transfer of control flow to the appropriate exception
handler.

In order to manage the semantics of Java exceptions during the execution of a Java program, an
exception context is maintained during the execution. This context defines, a any point p in the
program, for each exception e, the point p' to which control flow is transferred if execution of p
completes abruptly with an exception of class e (see Figure 4).

Candidates for such pointsp' are al catch clauses of the Java program. The actud p' for agiven
p and e is determined &t run time as follows: It is the catch clause of the most recently entered
try block (which has not yet been left) which can handle an exception of a type € which is
assignment compatible to thetype of e. If atry block contains multiple catch clauses that could
handle exceptions the types of which are assgnment compatible to thet of e, the first catch
clause in source code order is chosen.

try {

}
cat ch(ExceptionX e) {

P’ —=@0
finally { ...}

C. Met hodX() ;

voi d Met hodX throws ExceptionX {

p — 0 ..
t hrow new Excepti onX();

Figure4. Control Flow Transfer in Java

IST-1999-12504 © consortium AJACS 2002 Page 30/75

,\ N AJACS - Applying Java to Automotive Control Systems
)

AILCS Y Final Report - Concluding Paper V2.0

Note that even the main method has default exception handlers. They are used to catch any
exception for which the programmer has not provided handlers. The default exception handlers
print a backtrace and then terminate execution of the program.

The Java programming language divides reasons for which exceptions can be thrown into three
categories.

= Synchronous, checked exceptions such asindexing an array with an out-of-bounds index.
= Unchecked, asynchronous exceptions, such asthe delivery of a stop() signa to athread.
* Theuseof athrow statement.

Nested exceptions are not supported in the Java language. At any given time, a Java thread can
be handling a most one exception. here is no possbility to retain a current exception through
the process of throwing and eventudly handling a new exception. In particular, throwing an
exception € in an exception handler (or afinaly clause) which was entered as a consequence of
an exception e having been thrown previoudy reieves the thread from taking any action that
would have been required by exception e.

There are two principa ways in which the exception mechanism can be invoked:

= anexception is generated explicitly through the use of the Java throw statement,

» by execution an operation (such as adivison) under conditions (such as a zero divisor) for
which the Java language <specification requires an exception (such as a
Di vi si onByZer oExcept i on) to beraised.

In either case, control flow must be redirected so that - eventudly - the appropriate exception
handler is executed. Apart from detecting the presence of an exception (object), there are two
gpecific tasks that mugt be fulfilled :

= the possble intraprocedura control flow that is involved if a fragile method completes
abruptly.

If a statement completes abruptly with an exception for which there is an appropriate catch
clause in the current method, then the code contained in this clause is executed and the
exception is handled

» The choice of the gppropriate exception handler at runtime.
If a statement completes abruptly with an exception for which there is no appropriate catch
clause in the current method, then the method completes abruptly and returns to the caller.
The process then continues recursively, i.e. a catch clause is searched at the cdler leve.

4.3.1.3 Run-TimeImplementation Approaches

In order to support exception, specific run-time mechanisms must be made avalable. We
describe below three typical approaches.

Predefined Branch Table Approach

|ST-1999-12504 © consortium AJACS 2002 Page 31/75

AJACS - Applying Java to Automotive Control Systems
AIACBWEb Final Report - Concluding Paper V2.0

In this gpproach, atable is consulted after an exceptiona condition has been encountered. This
table isindexed by a exception identification. It contains the address of the exception handler to
cdl. This approach is widdly used in embedded systems because it is mimicking the hardware
interrupt approach. The code below isatypical C code.

#defi ne EXCEPTI ONFOO 3;
BranchTabl e[EXCEPTI ONFOO] = &Excepti onHandl er For Foo

Rai seExcept i on(EXCEPTI ONFQO) ;

Excepti onFoo

Excepti on
Handl er For FOO

Figure 5. Predefined Branch Table

This approach is not appropriate to support Java because there is no way to compute statically
the address of exception handlers in Java, unless some dragtic redtrictions are made to ensure
programming practices (such as catching the exception at the very end of the block where it is
thrown, for example).

Explicit Control Flow
In this gpproach, the control flows explicitly follows the nested cdlls flow:

= With the method A where the exception occurred, the mechanism branches directly to the
exception handler if thereis one.

= |f there is not exception handler, then the mechanism executes a return. An additiond return
vaue containing the exception object is tranamitted. Its presence means that the caller B of
the method A has to handle the exception. This means searching whether a handler is
available (and then branching to it) or ese returning the cdler of B. An improvement of this
mechanism is to place the return value in a variable. This is possible because there is only
one exception at atimein a Javathread.

If we assume the fallowing example where C cals B whichin turn cals A

|ST-1999-12504 © consortium AJACS 2002 Page 32/75

AJACS - Applying Java to Automotive Control Systems

A]ACSISE)

Final Report - Concluding Paper V2.0

void A throws ExceptionFoo {
t hrow new Excepti onFoo();

}

void B throws ExceptionFoo {

A'&);
}
void C {
try {
B();
}
cat ch(Excepti onFoo e) {
.}

Thered executed code looks like this

IST-1999-12504 © consortium AJACS 2002

Page 33/75

AJACS - Applying Java to Automotive Control Systems

Final Report - Concluding Paper V2.0

voi d Met hodA {

rai se exception as foll ows
Excepti onl nf o. Reason = Excepti onFoo

Excepti onl nfo. St at us Cccurred
return
}
Met hodB {
Call Method A ;
I f Exception. Status equal COccurred then
Ret urn
}

voi d Met hodC {
[* try { */
call Met hodB;
I f Exception. Status equal COccurred then
goto Excepti onArea;

goto AfterExcepti onArea;
/* catch(ExceptionFoo e) */ {
Excepti onArea :
i f ExceptionFoo = Exception. Reason then
code of Excepti onFoo handl er
goto After Excepti onArea;
el se
return

Aft er Excepti onArea :

}

This gpproach incurs the following overheed :

= searching through exception handlersin the current local exception context,
» tedting the globa exception variable after any point afragile method has been executed.

Stacked Exception Contexts

In this approach, an explicit searchable representation of the exception context is maintained,
and updated at any point in the execution where the dynamic context may change. Upon
entering the exception handling mechanism, the explicit context structure is traversed to find an

entry which represents the code of the exception handler.

Taking advantage of the fact that new exception handlers can only be introduced with try
blocks, which are either properly nested or appear in linear sequence, the context structure can
be organized as a stack; its entries are ordered lists which point to exception handlers, and of
course identify the exception that is to be handled by the provided handlers. Each time a try

IST-1999-12504 © consortium AJACS 2002

Page 34/75

,\ . AJACS - Applying Java to Automotive Control Systems

ARCS Y Final Report - Concluding Paper V2.0

-

block is entered, a new entry is pushed onto the stack; this entry contains the handlers provided
in the catch clauses of thistry block in the order in which they appear in the source code. Upon
leaving a try block, the entry that has been pushed onto the stack on behaf of this block is
popped from the stack. If a try block doesn't provide any handlers, the stack remains
unchanged.

Once an exception is been thrown, the search for the appropriate handler proceeds as follows:
Firg, the handler list contained in the top of the stack is searched; if a handler is found, it is
executed. Since this means that the try block has been |eft (to be precise, it has completed
abruptly), this top entry is popped from the stack prior to actual execution of the handler code.
If no gpplicable exception handler is found in the handler ligt of the top entry, the top entry is
popped as before (since control leaves the try block again), and the new top entry is searched
as before.

For instance, the following code

voi d Met hodA {

try {

try {
t hrow new Excepti onFoo();

}
catch(ExceptionFoo e) { // address2

)

}
catch(ExceptionFoo e) { // addressl

o}
catch(ExceptionBar e) {

)

Would imply the following execution

IST-1999-12504 © consortium AJACS 2002 Page 35/75

,\ . AJACS - Applying Java to Automotive Control Systems
Arcs Y Final Report - Concluding Paper V2.0

voi d Met hodA {
enter first try
push(addressl)
enter second try
push(address?2)

Rai se exception
address = pop()
Branch to address

pop

| eave second try
pop
| eave first try

4.3.2 Use In Embedded Systems

4.3.21 SoftwareEngineering

It is generdly agreed that exceptions are suitable to prevent the transformation of a clean
program structure into a spaghetti-like structure when error management has to be included.
See [Sun exception] for a convincing explanation.

However, the use of exceptions in embedded systems has raised significant controversy. It has
been widely argued [Hoare81] that most exception approaches are unsafe for embedded
sysems:

» When the usaed programming language uses a dynamic search for exception handlers, which
is the case of Java, Ada, and C++. It is argued that it is difficult to validate that the right
exception handler will be used”. Consequently it is difficult to vaidate a program using
exceptions.

= When anon gppropriate default handler is used for unexpected exceptions. For instance the
occurrence of an exception which is by desgn supposed not too happen (i.e. a bug) might
get to the default handler which would stop the running program and lead to catastrophic
falures

4.3.2.2 Real-Time Behavior
The handling of dynamic exceptionsinvolve

» gsygematic overhead. In the explicit control flow approach, overhead is systematic upon
returning from a method cal. In the stacked exception context gpproach, overhead is

4 One could argue that branching to an exception handler is even worse that a goto statement (an unanimously criticized

programming construct). In the goto statement, the execution flow of a program is abruptly changed to a statically defined
location. In the branching to an exception handler, the execution flow of a program is abruptly changed to adynamically
defined location.

IST-1999-12504 © consortium AJACS 2002 Page 36/75

,\ . AJACS - Applying Java to Automotive Control Systems
{Ff’ Final Report - Concluding Paper V2.0

systematic upon entering and leaving atry block®,

= exception occurrence overhead to dynamically search for the exception handler. In the
explicit control flow approach, the overhead depends on the number of nested methods
cdls. In the stacked exception context gpproach, the overhead depends on the number of
pushed exception handlers.

Systematic overhead islikely not to exceed amultiplying constant C. C is acceptable as long as
the overal systematic overhead due to Java does exceed a given threshold.

Method Normal Execution

time

>
A
Time Constraint |
Exception
Method N_ormal Handler Execution

Execution time

3>

Time Constraint |

Exception thrown
Figure6 Timing Constraint at Method L evel

Exception overhead occurrence depends on whether a red-time congtraint is associated with
the application "process’ in which the exception is raised or with the exception handler itsdlf. In
the firgt case, the overhead is systematic and therefore predictable (see Figure 6). In the second
case, there is a predictability issue related to the dynamic search (see Figure 7). The second
case is therefore not an acceptable behavior for embedded systems.

®> Note that thiswould promote Java programming style where atry block containing aloop should be preferred to aloop
containing atry block

IST-1999-12504 © consortium AJACS 2002 Page 37/75

,\ . AJACS - Applying Java to Automotive Control Systems
A]A(B{YE Final Report - Concluding Paper V2.0

Exception

Method Normal Handler Execution
Execution time

Time Constraint

Exception thrown

Figure7 Timing Constraint at Handler Level

4.3.2.3 Memory Needs

Exceptions in Java are objects which are usualy ingtantiated each time an exception occurs.
The rationae behind this approach isto dlow for the provison of specific information about the
exception. For instance, the exception object could contain data to be made available.

This means that each time an exception is raised, then some memory resource is dlocated. This
is not an expected behavior in embedded systems, especidly in dtatic systems where all
resources are predetermined.

Fortunately Java alows applications program to throw exception objects which have been pre-
ingtantiated.

An important issue is that the standard behavior of predefined system exceptions (eg.
ArithneticException) is to indantiatle dynamicaly exceptions. This is an issue for
embedded systems.

4.3.3 Recommendations

4.3.3.1 Software Engineering

The following recommendations can be made for embedded systems :

= Because exceptions can be used in a unstructured way, i.e. an unsafe way, apply software
programming rules, such as making sure exception handling code appear close to the fragile
Statement it handles exception for.

» Make sure that a default handler is associated with each runtime error (in order to avoid a
default handler which stops the program).

4.3.3.2 Real-Time Behavior

The following recommendations can be made for embedded systems :

= Exception handling carries a systematic overhead which should be taken into account.

IST-1999-12504 © consortium AJACS 2002 Page 38/75

,\ . AJACS - Applying Java to Automotive Control Systems
Arcs Y Final Report - Concluding Paper V2.0

= |f atiming condraint must be associated with an exception handler, then make sure the
dynamic search overhead for a handler is predictable, possbly by enforcing software
programming rules (for example, verify the cal nesting leve asit is dready typicdly donein
Embedded Systems to avoid stack overflow).

4.3.3.3 Memory Needs

The following recommendeations can be made for embedded systems :

= |tishighly recommended not to instantiate a user-defined exception in the throw statement?®.
Rether, create it a the very beginning of the program and throw it when needed (see
example below). This could even dlow them to be ROMized.

t hrow new FooException()

is replaced by

/[l in the init part
FooExcepti on Myl nst anceOf FooExcepti on = new FooException();

/1 in the nmethod code
throw Myl nst anceOf FooExcepti on;

» Likewise, the same recommendation applies to runtime exceptions, i.e. make sure the Java
runtime does not create objects when an exception is thrown upon aruntime error.

4.4 Initialisation

441 Principles

44.1.1 Introduction

This section andyzes the initidization characteristics of Java software programs and of
embedded systems software. It then provides recommendations concerning the initidization of
Java components for embedded systems. In order to clarify discusson, it is convenient to
describe the execution of a software component with the following phases:

* Download phase : the software is placed where it will be executed.
» Sartup phase: initidization is performed
» Active phase: sarvices are available and can be executed on-demand.

® Note that this "breaks" tradition in that traditional Java exceptions carry a stack backtrace to identify where the exception was
thrown from.

IST-1999-12504 © consortium AJACS 2002 Page 39/75

,\ . AJACS - Applying Java to Automotive Control Systems
ARCS Y Final Report - Concluding Paper V2.0

-

4412 Initialization in Java

A Java component conggts of a st of classes. Its initidization must therefore dlow for the
proper initialization of these classes. Two parts have to be considered :

= A datic part conggting of class fields and methods. They are smilar to globd variables and
functions in non-object oriented languages such as C.

= A dynamic pat conssting of objects, or dynamicaly crested entities which include ther
own fields and methods. Objects have no counterpart in non object-oriented programming
languages such as C.

The initidization of a Java component (and in generd of object-oriented programs) must teke
into account the initidization of the datic part as wel as the dynamic part. This is done as
followsin Java (as per [Java Language Specification]) :

= Downloading takes place a the class leve a anytime. Note that downloading may imply
more than just copying code and data into memory. It could dso involve such as dynamic
linking, or even de-seridization of classes (i.e. recongtructing a class from a stream)

» Classssaeinitidized a first use

Objects are created and initidized at any time.

Therefore the initidization of a Java software component follow the download, startup and
active phasesin anon classcad manner, as some parts may dready be in the active phase while
others are just being loaded or initidized.

The following sections explains in further detail class and object initidization as specified for a
classcd Javaenvironment.

Class Initialization at First Use

Class intidization is highly influenced by the underlying capability that cdasses can be
downloaded a anytime. It involves

the possible recursive download and initidization of classes.
theinitidization of interna run-time data for each class

the execution and initialization of user programmed entities associated with classes such as
class gatic initidizers (1), initidizers for satic fidds (2). This scheme is described as follows
in [Java Language Specification) :

“Initialization of a class consists of executing its static initializers (1) and the
initializers for static fields (2) declared in the class.

The example below shows both types of initidization.

IST-1999-12504 © consortium AJACS 2002 Page 40/75

. AJACS - Applying Java to Automotive Control Systems
Arcs Y Final Report - Concluding Paper V2.0

class Foo {
static int ¢ = 5; // (2)initializer for static field
static int d;
static { /1 (1) class static initializer
d = 6;
}

The events which can causeaclass T to be used for the first time are the following :

» (1 Tisacdassand aningtanceof T iscreated.

* (2 Tisaclassand adatic method declared by T isinvoked.

= (3) A ddicfidddeclared by T isassigned.

= (4) A dtic field declared by T is used and the reference to the field is not a compile-time
congtant

= (5) T isthe superclass of aclass U which needsto be initidized

The following example, shows the five cases of initidization.

class A {}
class B {
static void foo();
}
class C{
static int bar;
}
class D {
static double r = Math. randon();
}
class E {}
class F extends E{}
class App {
void main() {
A a = new A(); /[1(1) class Ais initialized
B. foo(); [1(2) class Bis initialized
C. bar = 42; [1(3) class Cis initialized
if (D.r> 0.5) { /1(4) class Dis initialized
Ff = new F(); /1(5) class Eis initialized and then
/1 class Fis initialized
/! note the E and F
/1 may never be initialized if they
/'l not used el sewhere
}
}
}

Interface Initialization at First Use

|ST-1999-12504 © consortium AJACS 2002 Page 41/75

,\ . AJACS - Applying Java to Automotive Control Systems
Arcs Y Final Report - Concluding Paper V2.0

Clases could implement interfaces. They dso follow a philosophy of initidization at first use.
Apat from runtime internd initidization code, user programmed entities aso need to be
initidized. [Java Language Specification] specifiesthe following :

“Initialisation of an interface consists of executing the initializers for fields declared
in the interface” .

This shown in the example below

interface B {
int b = 4; // initializer of an interface field

}

class Foo inplenments B {

The events which can cause an interface to be used for the first time are the following :

» (1) A atic field declared by T is assigned.
» (2 A ddic fidd declared by T is used and the reference to the fied is not a compile-time
congtant

Note that interfaces implemented by classes are not initidized a class fird use. Smilatly,
superinterfaces of an interface need not be initidized before the interface isinitidized.

The following example, shows the two cases of initidization.

interface C{
static int bar;
}
interface D {
static double r = Math. randon();
}
class E {}
class F extends E{}
class App inplenments C, D {
void main() {
C. bar = 42; /1 (1) interface Cis initialised
if (D.r> 0.5) { /1 (2) interface D be initialised

}

Object Initialization
Object initidization involves
= some internd run-time overhead. At the beginning of an object's life, the Java virtua

|ST-1999-12504 © consortium AJACS 2002 Page 42/75

,\ . AJACS - Applying Java to Automotive Control Systems
Arcs Y Final Report - Concluding Paper V2.0

machine (JVM) dlocates enough memory on the hegp to store the object's ingtance
varidbles. If there is no expliait initidization of instance variables, then some default vaues
are assigned : zero vaue for numeric types, null for areference and false for a Boolean. See
the example below. Note that local variables are not given default initid values.

class MyC ass {
private int bar; // bar is initialised to zero
void foo() {
int a; // ais not initialised

}

» The execution of user programmed code to initidize the ingance variable Three
mechanisms are available to ensure proper initidization of objects: (1) ingtance initidizers
(a0 cdled ingance initidization blocks), (2) ingance variable initidizers, and congructors
(3). (note that ingtance initidizers and indance variadle initidizers collectively are cdled
"initidizers). All three mechanisms result in Java code that is executed automatically when
an object is created.

The example below shows an ingance initidizer.

class MyCl ass {
private int foo;
{ /!l This is the instance initialiser block
foo = 355; // foo is initialised to 355

}

The example below shows an instance variable initidizer

class MyC ass {
private int foo = 355; // foo is initialised to 355

}

The example below shows an constructor

class MyCl ass {
private int foo; // foo should be initialised to 355

MyCl ass {
Foo = 355;
}

More detailed rules and examples can be found in [V enners 98].

4.4.1.3 Initializationin C

In comparison, initidization in C is much smpler. C does not propose any programming
condructs for initidization except something that can be consdered as the equivdent of Java
initidizers for getic fidds.

|ST-1999-12504 © consortium AJACS 2002 Page 43/75

,\ . AJACS - Applying Java to Automotive Control Systems
A]A(B{YE Final Report - Concluding Paper V2.0

A software component written in C is viewed as a collection of c files. The only entities to
initidize are globa variables. Two schemes are available ..

= (1) initidization of variables declared as congants. In most implementations, this means that
the variables can be located in ROM. If we refer to the download, startup and active
phases, such variables are therefore initidized during the download phase. Note that Java
does not alow the declaration of congtants.

» (2 initidizaion of other varidbles. This means that such varigbles will be located in RAM.
Such variables are then initidlized during the start-up phase.

Hereis an example of the two types of initidization

const int var_in_rom=42; [// (1) initialized at downl oad phase

int var_in_ram= 12; /1 (2) initialised at start-up phase

4414 JavaversusC

This presentation shows that

» Javaprovides ainitidization programming modd. C does not.

= Java does not provide to the program an explicit way to control the initidization execution.
This is not the case in C precisdly for the reason that C has no initidization programming
modd

= Cdlowsfor the declaration of constant data which can be then be put in ROM. Standard
Java does not.

4.4.2 Intended Usein Embedded Systems
4.4.2.1 Practices

Typical Practice for Initialization

Typica initidization in embedded systems written in C is performed during the startup phase in
order to guarantee aclear view of theinitid state of the system before active phase

» (1) globd variables are initidlized before execution of any user code. They are initidized at
the very beginning of start-up time, before execution of themai n() function,

* (2 intidization of each software module. Each module provides an initidization function
which is cdled explicitly during sart-up time, typicdly inthemai n() function.

The following example gives an idea of what a system initidisation can be:

|ST-1999-12504 © consortium AJACS 2002 Page 44/75

m AJACS - Applying Java to Automotive Control Systems

ARCS Y Final Report - Concluding Paper V2.0
int Foo = 12; /1 (1) initialised at start-up phase before main
mai n() { /1 (2) initialization of each software nodul es

Hardware_init(); /1 for exanple : sets wanted interrupts

Drivers_init(); /1 sets internal data to nanage present

/1 devices

HM _init(); /1l sets structures linked to HM

stat emachine_init(); /1l sets state machine to initial state
/[l initialization is conpleted, active phase is starting

while (1)

statemachi ne_exec(); // active node : state nmachine is running

}

Soecific Practice for Satic Systems

Embedded datic sysems have further specific requirements which are due to the type of
memory footprint they are using (for ingance a sysem on a chip with 2kbytes RAM, 16
Kbytes ROM), and the need for a predictable usage of such resources.

The resulting practice is to have as much as possible data in ROM. This means that whenever
possible data that are known to reman congtant during the active phase should not be
caculated and initidized during the startup phase. This should be done before, i.e. during the
downloading phase of data into ROM. This practice was a requirement for instance in the
definition of a red-time kernd standard such as OSEK [OSEK], where it is assumed that
kernd data such as the tasks descriptors will be partidly in ROM.

4.4.2.2 Classl|nitialization

Asit should be clear now, the use of standard Java implies initiaization gpproaches that are not
compatible with embedded systems. Some further guiddines and possibly modification of the
initidization scheme in Javais therefore necessary

» Dynamic classloading is not supported. There is no guarantee that a universal downloading
mechanism can download aclassin time.

» |nitidization of classes does not take place at firgt use in order to avoid non predictable
execution time.

The following gpproach is possble in order to avoid classinitidization at first use:

= All dasses are initidized during the starting phase @ the very beginning of the program
before any Java code is executed. This gpproach makes initidization entirdy predictable,
but it raises amgjor issue, initidizing classes with the right order. In order to handle that, we
can see two techniques:
The order in which the dasses are initidized is given by the programmer (eg. through
annotations). This is an error prone gpproach. The programmer could make a mistake
and then would have to debug class initidization. Secondly it could lead him to have non
portable code that rely on an explicit ordering.

|ST-1999-12504 © consortium AJACS 2002 Page 45/75

AJACS - Applying Java to Automotive Control Systems
Final Report - Concluding Paper V2.0

The order in which the classes are initidized is pre-computed by the compiler and all
ambiguities (e.g. circular dependencies) have to be removed by the programmer.

Note that initidization at first ingtantiation (when an object of classisingantiated (created) it can
check if the dass is initidized; it will initidize the dass if it is not initidized) is not a correct
approach :

» gatic fidds of aclass could be used (read/write) before an object of thisclassis created

» even if aclass has no ddtic fied, this approach is not satisfactory because the ingtantiation
overhead is not predictable from one ingtantiation to another.

4.4.2.3 Object Initialization

Smilarly, in order to gain predictability, it could be desirable that objects are initidized before
getting to the active phase; e.g. during the startup phase. We call such objects pre-initialized
or predefined objects. They are objects which the gpplication can access from the very
beginning of the execution.

If dass initidization is executed during the startup phese, no further complex mechaniam is
needed. The embedded system programmer just has to declare the predefined objects during
class initidization phase, and tell the compiler that they have to be initidized before other kinds
of classes, usng any kind of annotation (ex: specid class name, implement a compiler-known
interface...). Thisisillugtrated in the example below

}

public class PredefinedObjects {

/[* Class Fields that store the Predefined Objects: */
public static Classl Objectl;
public static Class2 bject?2;

/[* Initialization, creation of the predef objects: */

static {

bj ectl = new Cl assl(..);
bj ect2 = new C ass2(..);
}

/1 somewhere else in the application:
public class Application {

public static void main(String[] args) {
T
Obj ect 1. met hod1(.)

}

IST-1999-12504 © consortium AJACS 2002

Page 46/75

,\ . AJACS - Applying Java to Automotive Control Systems

ARCS Y Final Report - Concluding Paper V2.0

4424 Congantsin ROM

A critical issue is to dlow the use of congtants in ROM. Because sandard Java does not
support congtants, an investigation has to be made on possible extensons:

» Use of congants accessed through native methods. This solution is straightforward and
does not require extensons to a sandard Java system. On the other had it implies the
systematic overhead of method call. In practice this is an acceptable gpproach when there
IS not so much ROM data, or when the compiler is able to inline C code.

= Support of objectsin ROM, or objects which include congtant fields. This gpproach implies
programming language investigation, i.e. how can such objects be declared and how a
compiler can verify that an object can be ROMized. Objects in Java have a complex
initidization phase. In order to validate that an object can be located in ROM, a complex
andysis would have to be performed to verify 1) that dl fields are condtants, 2) that dl fied
will not be changed (written) and 3) that there is only one object. This kind of analyss is
required for arraysin ROM and stackable objects, aso.

= Part of the startup code of the gpplication is executed before download phase on the host
system. Resulting data are frozen and put in ROM. This gpproach was not investigated.

Supporting ROMized Objects

The rest of this section explains some of the investigation that was carried out for the support of
objectsin ROM.

Firg of dl here are anumber of consderations that have to be taken into account

» ROMized objects could contain internd fields which cannot be located in ROM. If thisis
the case, then gppropriate mechanism must be included at run-time to access ROM area as
well RAM area

= Andgorithm hasto be found that alows a compiler to determine for a given object whether
it can be ROMized. This would be straightforward in the case of objects of type "array of
scdar type'. These are arrays that are initidized at the very time they are declared, like in
the example below. This would raise issues for more generd type of objects such as
checking if the initidization vaue is known a compiletime, checking if the vaue of an
object field remains congtant, or determining the ingtantiation points.

IST-1999-12504 © consortium AJACS 2002 Pege 47/75

AJACS - Applying Java to Automotive Control Systems
Final Report - Concluding Paper V2.0

/1 exanple of arrays of scalar types
class MyC ass {

static int staticfield_ array[] = {1
int instancefield array[] = {6,7,38,
void foo() {

,2,3,4,5};
9};

int local array[] = {2, 4,6, 8};

In an approach where the programmer is responsible for determining the objects that should be
ROMized then some solutions are possible. We describe two of them.

Supporting ROMized Objects through Data Declaration in Separate Files

This solution consgs in declaring data in separae files. Let us suppose we want to ROMize
some ingtances of the following class.

class Foo {
final int a;
final int b;

The ROMized objects could then be declared in a configuration file like the following:

{

a
b

ROM "fool" OF CLASS "Foo"

7
23;

And ameansto have areference to this object could be the following:

Foo fool = get ROM zed("foo0l"); /* instead of new Foo() */ |

This gpproach dlows full control of the ROMization by the programmer. But it requires the
definition of aromization language and the availability of appropriate tools.

Supporting ROMized Objects through Manual Creation of Objectsin C

In this approach, the programmer describes in C the initidization values of a const C structure
which directly maps onto a Java object. This necesstate the knowledge of this mapping. For
ingtance the following structure declaration in C could be the counterpart to class Foo above.

|ST-1999-12504 © consortium AJACS 2002 Page 48/75

,\ . AJACS - Applying Java to Automotive Control Systems
A]A(B{YE Final Report - Concluding Paper V2.0

struct _Foo {
_Class * _class;
javaint a;
javaint b;

Then it is expected that the programmer performs initidization by declaring a C file with the
following code

const struct Foo fool = {
&Foo_Cl ass,
(javaint)7,
(javaint)23

This gpproach is graightforward and smple to undersand. On the other hand it is highly
dependent on the physica layout used by the compiler and may thus render the code non
portable.

Supporting Satic Final Fields as Constants

In this gpproach, the only congtants that can be placed in ROM, are static find fields, which are
initialized with a compile-time congtant vaue, eg.

class foo {
final static int bar = 5;

}

The generated code looks then like:

AJACS inROM int_J foo_bar = 5;

A further optimization would gill be possible conssting in replacing al reeds of this field by the
congtant itself. The fields do exist in case, that the C code reads these fidds:

IST-1999-12504 © consortium AJACS 2002 Page 49/75

,\ . AJACS - Applying Java to Automotive Control Systems
A]A(B{YE Final Report - Concluding Paper V2.0

class D {
int i = foo. bar;

}

*(object_ptr + offset(i)) = 5;

443 Recommendations

4.4.3.1 ClasslInitialization

It is recommended

» todownload dl classes a compile-time,

» to execute class initidization during the sartup phase. This necesstates from the compiler
specific andlyss cagpability a the leve of initidization expressons for object indantiation,
create class dependencies (class c1 must be initidised before class ¢2) and subsequently
generate the correct sequence of class initidizations. It is possble that the compiler cannot
determine this sequence. It is proposed that in such case the compiler rgect the resulting
program and issue compiler error messages.

4.4.3.2 Object Initialization

It is recommended to use the predefined object gpproach for embedded systems which require
adatic definition of objects.

4.43.3 Congtantsin ROM

The support of congtants in ROM may be one of the most important issue to solve. We
advocate the use of Satic Find Fidds as Congtants. In the case where full objects have to be
put in ROM, then rurther investigation is needed with possibly the need for the Java compiler
community to agree on some approaches that would need to be standardized.

4.5 Memory Management

45.1 Principles

45.1.1 Garbage Collection
See4.2.2.1.

45.1.2 Usage of the new Statement

The [Java Language Specification] does not explicit list dl the cases when objects are created.
There are two cases:

IST-1999-12504 © consortium AJACS 2002 Page 50/75

,\ . AJACS - Applying Java to Automotive Control Systems
A]A(B{YE Final Report - Concluding Paper V2.0

ingtantiation of a user-defined class
this is the straightforward case and is a direct consequence of the object-oriented
software engineering of the application.
it is likely that in a well-defined software module, the programmer will cregte only the
objects he needs.

cregtion of intermediate objects for adaptation to an interface
this is a non graightforward case which can be typically found out in Java components
which interact with areaedy exigting libraries
it is often due to a bresk in the object-oriented scheme. For example, consder the
program below which first reads into a array a sequence of characters, and then
invokes a printing function with a String parameter

char nyArray[];

myArray = readArray(); // this nmethod returns a new char[] instance
printingFuntion(new String(myCharArray)) // this nethod needs a String

Memory used for such a temporary use has no red gpplication judtification. But it is
just handy and it is known that it be reclamed later by the garbage collector anyway.

45.1.3 Implicit Creation of Objects

Programmers using third party packages of Java classes often have no sufficient knowledge of
the objects created by these libraries. This even apply for “standard” libraries delivered by Sun
Microsystems. For instance, the use of strings and exceptions often lead to the interna crestion
of objectsthe programmer is unaware of. Thisisillugtrated in the following example:

int i=42;
String s = “nyString = + i;

While this portion of code contains no explicit “new’ statement, it will actudly create:

aStringobjectforthe“myString = “ gring.

aStri ng object in an internd method (I nt eger . t oSt ri ng) cdled implicitly
toconvert42inaStri ng

an aray of 12 chars wusd intendly in the implementaion of
I nteger.toStringinJDK13

aSt ri ngBuf f er used for performing the append (“+") operator

aSt ri ng object for s. Thisistheonly “vishle’ implicit cal tonew.

Except for s, dl the other objects will never be referenced further by the program, and then
could be garbage collected right away.

Exceptions may aso lead to uncontrolled object creation, for example, suppose the following
code:

|ST-1999-12504 © consortium AJACS 2002 Page 51/75

AJACS - Applying Java to Automotive Control Systems
Final Report - Concluding Paper V2.0

int myDivide(int p, int q)
{
int res;
try {
res = p/q;
} catch (Arithneti cException e) {
res = 0;
}
return res;
}
Then each cdl to this function with a zero as a second argument will lead to the creation of an
intermediate Arit hmeti cExcepti on object (divison by zero) that will have no
referencing a the time the function returns, and then will remain in memory until it is garbage-
collected.
4.5.1.4 Downloading Overhead
The format of Java classfiles, as defined in the [JVM Specification], does not dlow them to be
executable in an efficient manner. A VM implementation will have firg to copy dmos dl the
content of these classes into a specific memory area viewed as a temporary disk, and then
peform a loading into implementation-defined structures, before being adle to execute the
code. Thisisanon negligible memory overhead.
45.1.5 General Practice Recommendations
Even in typicd Java environments where vast amount of memory is available, the uncontrolled
use of services described above could lead to alack of free memory.
Sring concatenation using St r i ngBuf f er
The St ri ng concatenation feature is a good example of a potentid misuse of the standard
APl which was detected and corrected a the very beginning of the Java language existence.
The fact that St ri ng srings are immutable (i.e. they cannot be modified) increases the
number of objects needed, so the user is prompted to use directly the St ri ngBuf f er
class, even if it does't sound naturd.
According to the recommendations of the Java specification, the previoudy cited example:
int i=42;
String s = “nyString = “ + i;
should be rewritten this way:
int i=42;

StringBuffer tenp =

“nmyString”

tenp. append(i);
String s = tenp.toString();

which will creste

IST-1999-12504 © consortium AJACS 2002

Page 52/75

AJACS - Applying Java to Automotive Control Systems
ARCS\Y Final Report - Concluding Paper V2.0

aStri ngBuf f er objectforthe“myString = “ dring.

an array of 12 char susad intheinternd implementation of | nt eger . t oSt ri ng
inJDK1.3

aStringobectin | nteger.toString cdled implicitly to convert 42 in a
String

aString objectfors.

Note that no new object is needed for the append operation, as St r i ngBuf f er strings can
be expanded (they are not immutable as St r i ng objects).

Re-use existing objects when possible

Another way to avoid the creation of more objects than needed conssts in designing an
application in such a way that objects can be re-used severa times. Severd instances of one
class are created.

Assume the following example, where one wishes to draw severd points.

class Point {
private int x;
private int vy;
Point(int x, int y) { this.x=x; this.y=y;}
void draw();
}

class Application {
void foo() {

Poi nt pl = new Point (42,0);
pl.draw);

Poi nt p2 = new Point (195,0);
p2.draw);

Poi nt p3 = new Point (84, 12);
p3.draw);

Poi nt p4 = new Point (126,523);
p4.draw);

If the Point class was redesigned to dlow modification of its fields, as follows, the code can be
written while cregting only one Point object:

IST-1999-12504 © consortium AJACS 2002 Page 53/75

,\ . AJACS - Applying Java to Automotive Control Systems
Arcs Y Final Report - Concluding Paper V2.0

class Point {
private int x;
private int vy;
Point () {}
public void set(int x, int y) { this.x=x; this.y=y;}
public void draw();
}

class Application {
void foo() {

Point p = new Point();
p.set(42,0);

.draw();

.set (195, 0);

.draw();

.set (84, 12);

.draw();

.set (126, 523);

.draw();

T T T T T T T

Creation of object pools

The reuse of existing objects described above can be made automatic using a particular pattern
caled “object pools’. These object pools are collections of objects of the same class that can
be reused with other vaues when their content is not needed anymore.

Note that this scheme is only efficient when using large collections of instances of the same
class, with both numerous alocations and numerous de-alocations. Else, the normd way of
proceeding is often sufficiently efficient. In order to avoid memory lesks, it is dso suggested to
define an accurate default size for such collections and pre-allocate dl the necessary objects.

A implementation of such an object pool can be the following:

|ST-1999-12504 © consortium AJACS 2002 Page 54/75

. AJACS - Applying Java to Automotive Control Systems
Arcs Y Final Report - Concluding Paper V2.0

class nyClass { // the kind of objects to gather in a poo
private int foo;
private byte bar;
public void set(int foo, byte bar) {
this.foo foo;
thi s. bar bar;

}

}
class nyCl assPool { // the pool of nyC ass objects

private myCl ass pool[];
private bool ean valid_obj[];
private int nb_reusabl e_obj;
myCl assPool (i nt nbobj) {
int i;
nb_reusabl e_obj = nbobj;
pool = new nyCl ass[nbobj];
val i d_obj = new bool ean[nbobj];
for (i=0; i<nbobj; i++) {
pool [i] = new mnmyCl ass();
valid obj[i] = fal se;

}
}
public nyClass createObj(int foo, byte bar) {
int i;
for (i=0; i<nb_reusable_obj; i++) {
if (valid_obj[i] == false) {
/1 this pool object is not used yet, return it
valid obj[i] = true;
pool [i].set(foo, bar);
return pool[i];
}
}
/1 the pool is full: return an unmanaged i nstance of nyCl ass
myCl ass newObj = new nyC ass();
new(bj . set (f oo, bar);
return newCtbj;
}
public void rel easeObj (nmyCl ass obj) {
int i;
for (i=0; i<nb_reusable_obj; i++) {
if (pool[i] == obj) {
/!l mark the object invalid
valid obj[i] = fal se
return;
}
}
/1 the object is unmanaged: trust the garbage collector
}

In this implementation, the programmer will cregte an object pool of a predefined size (which
will never diminish), and if he needs more objects, they will be crested using the default VM
mechanism. The example of the previous paragraph could look as follows in such an
implementation:

IST-1999-12504 © consortium AJACS 2002 Page 55/75

AJACS - Applying Java to Automotive Control Systems

Final Report - Concluding Paper V2.0

class Application {
void foo() {

Poi nt Pool pool = new Poi nt Pool (2);
Poi nt p1;

Poi nt p2;

pl = pool.create(42,0);

p2 = pool.create(195,0);
pl.draw();

p2.draw();
pool . rel easebj (pl);

pool . rel easeObj (p2);

pl = pool.create(84,12);
p2 = pool.create(126,523);
pl.draw);

p2.draw();
pool . rel easehj (pl);

pool . rel easehj (p2);

The resulting programming practice therefore reverses to a Stuation where one have to care
with the release of objects. If r el easeCObj is not cdled for a particular object, then the
object is lost forever, as the object will never be garbage-collected, since it is referenced in the

poal.
Intended Use in Embedded Systems

45.2.1 Limited amount of memory

Even though memory cod is congantly decreasing, limitation of memory is gill a concern in
embedded systems. Prices of consumer el ectronics devices such as PDAS precisaly depend on
the amount of memory available.

One of the main issues is the downloading overhead of Java classes in terms of memory. We
saw previoudy tha the Java class file format incurs sgnificant memory overhead. Solutions
based on the use of a different formats could dlow efficient execution if the format dlows the
downloading phase to avoid intermediate copies from memory to memory. But these formats
would have to be standardized in order to guarantee downloading in every platform. Thisisthe
case of the |SO standard JEFF file format [JEFF]. Further, the JEFF format isfully reversiblein
that a JEFF file can be converted into a class file and vice-versa

45.2.2 Static Embedded Systems

Because of the very limited use of RAM memory in static embedded systems (for instance
2kbytes RAM), very stringent limitations would have to be consdered :

* In terms of downloading, compile Java classes into native code. This raises platform
independence issues, but it dlows the execution of code placed on ROM.
» Intermsof programming, follow some guiddines such as:

IST-1999-12504 © consortium AJACS 2002

Page 56/75

,\ . AJACS - Applying Java to Automotive Control Systems
A]A(B{YE Final Report - Concluding Paper V2.0

creste most objects at the very beginning of the execution of the application, or even at
generation time (see section on initidization)
avoid the dynamic creetion of objectsif possible in the rest of the program. Possibly use
object pools

* Intermsof WM, use an implementation which
Provides a good traceability on how objects are mapped into memory.
Support the possibility to dlocate temporary objects in the stack (for ingtance as an
extenson to the language as proposed by [Red-Time Core Specification].

45.2.3 Hard Real-time Systems
See 4.2.2.1 for an analysis of the rlevance of using garbage collection in red-time systems.

Another dternative is therefore not not to use a garbage collector. As a result, either a fully
datic system where al objects are alocated at the very beginning is defined, or a mechanism to
de-dlocate objectsis made available.

One solution for a VM to provide de-alocation festure without bresking completely the Java
philosophy is to organize the memory into banks that group objects and can be de-allocated as
awhole by the programmer, for example when a high leve treatment is finished. This is exactly
the solution provided by the [Red-Time Core specification], for example with the
Al | ocati onCont ext savice each piece of code executes within an active
Al | ocat i onCont ext, which groups al the new objects (crested with new), and the
programmer has the possibility to freean Al | ocat i onCont ext asawhole.

45.3 Recommendations

45.3.1 Limited Amount of Memory

For systems that are weskly condrained, the main recommendation is to use a Java
environment that is able to execute from ROM memory, such asa JVM based on JEFF classes
description.

The programmer should aso gpply dl the techniques described in this document and other
related book from the Java community in order to use efficiently the VM., such as memory
pools, St ri ngBuf f er ingeadof St ri ng, etc....

4532 Static Systems

It is recommended to follow the guidelines listed above in 4.5.2.2 as well of the mechanisms for
initialization described in section 4.4.3.

45.3.3 Hard Real-Time Systems

It is recommended not to use garbage collection until some wedlth of experience has been
accumulated. Instead a mechanism based on memory banks is advised.

IST-1999-12504 © consortium AJACS 2002 Page 57/75

,\ . AJACS - Applying Java to Automotive Control Systems
Arcs Y Final Report - Concluding Paper V2.0

4.6 Native Interface

4.6.1 Principles

4.6.1.1 Introduction

A Javandive interface is needed in two types of applicaions.

= Support for legacy software code. It can ether be legacy code which Java applications
have to access or the other way round, i.e. Java code which legacy applications have to
access.

» Replacing a Java implementation by a more efficient legacy code implementation. For
ingance, as interrupts often have the requirement to be treated very quickly, the most time-
congtrained Interrupt Service Routines can be written in C.

In order to alow the mixing of Java and other programming language code, Sun Microsystems
has defined a mechanism cdled Java Native Interface [INI]. We first explain the various nétive
interface exchanges in NI and then discuss possible native interface profiles.

In the rest of the section, we will assume that legacy code is C code.

4.6.1.2 JINI Mechanismto Call C

The most useful interface is probably the function cal mechanism. It is typicdly used when a
new program, written in the Java language, reuses legacy C functions written in C. Such C
functions are declared as native methods as follows

class HelloWorld {
native void hello();

}

The steps for implementing such a function with the usud NI is split in 6 Steps, as the following
figure shows (extract from the [INI tutorid]):

IST-1999-12504 © consortium AJACS 2002 Page 58/75

,\ . AJACS - Applying Java to Automotive Control Systems
o Final Report - Concluding Paper V2.0

1.
YW'rite the Java code.

[HelTckorld java |

P Eana

4.
YWrite the implementation of
the native method.

| HelloWorldImp. c |

5.
Corpile the native code and
load the shared library.

6

Run the pragram using the
Java interpreter.

—b| "Hello World!"

Here isashort description of the Six steps:
» First step : some Java code is written to access a method that has been declared as native.

» Second step : the Java code is compiled
» Third step : aJavatool caled Javah is used to generate C headersfile
» Fourth step : A C function conforming to the generated C header file is written. . The

hel | o() method given above then looks like the following

JNI EXPORT void JNI CALL Java_Hellowsrl d_hello (JNI Env *env,
j object obj) {

// C code for the nethod
}

Note that

Some specific header convention are used (JNI EXPORT and JNI CALL)
Some specific parameters are provided, the VM environment g€nv), adong with a

reference to the self object (obj)”.

" As C components have access to object references they may decide to store in some C
variables the reference and use them later, for instance in a subsequent native dl. Some
precaution must be taken because the validity of object references may change overtime.

IST-1999-12504 © consortium AJACS 2002 Page 59/75

. AJACS - Applying Java to Automotive Control Systems
Arcs Y Final Report - Concluding Paper V2.0

Fifth step : the C function is compiled and loaded
Six step : the gpplication is executed

4.6.1.3 JNI Mechanism to Call Java
Thisit typicaly used when a C program cdls a Java method.

Let us assume that the C component seen above wishes to invoke thef oo class method:

class Hell oWworld {
native void hello();

static int foo(int i) {returni + 1};

In order to achieve this, three steps are defined :

= get areference to the class of a given object through a NI service
= get areference to the method to cal through a NI service
» reguest for amethod cal through a NI service

The C code used to call this method is the following:

JNI EXPORT void JNI CALL Java_Hellowsrl d_hello (JNIEnv *env,

j obj ect obj) {
/1 env is a context
/1 obj is a reference to the self object

/1l step 1
jclass cls = (*env)->Get Obj ect Cl ass(env, obj);

[/l step 2
jmethodl D mid = (*env)->Cet Stati cMethodl D(env, cls, "foo", "(1)I");
if (md==20) { // check identifier validity

return;

}

/1l step 3
depth = (*env)->Cal |l Staticlnt©Method(env, cls, md, depth);

Note that step 2 involves a dynamic search on the name of the method (a string “foo”), as well
as on the signature of the method (a string “(1)1”). The Sgnature is used to make the difference
between two methods with the same name.

IST-1999-12504 © consortium AJACS 2002 Page 60/75

,\ . AJACS - Applying Java to Automotive Control Systems
Arcs Y Final Report - Concluding Paper V2.0

4.6.1.4 JINI Accessof Java Datain C components

Once a C function is running, it may wish to access parameters, or Java structures.

Thefollowing types of deta are defined in Java:

* integra types(byt e,i nt,bool , ..). Thepossible operations are read and write.
= references to Java objects. The possible operations are creation, read and write a field,
method calls.

= araysof integra types or of references to Java objects
The following provides examples of different kinds of data:

int i=3453; // integral type : integer
byt e b=85; /1l integral type : byte
bool o=true; // integral type : bool ean

myCol orCl ass Blue; // reference type
if (Blue.foo == true) // read a field using reference
Bl ue. bar = 2; /1 wite a field using reference

int a[] ={1,2,3}; // array of integral type
myCol orClass t[] = {Blue, Red, Geen};

Assuming that the C component has a reference to the Java context (“env”) and the object
reference (“obj), access to Java datais achieved through the following 3 steps :

= get areference to the class of the object

= get areference to the class to which the object belongs through a INI service
= get areferenceto thefield of the object through a NI service

* reguest the vadue of the object field through a INI service,

In the following example, we want to access the field called “f 00” of the following dlass from
the native code

class nyC ass {
int foo;
native void nmyNativeMethod();

The corresponding C code |ooks as follows:

|ST-1999-12504 © consortium AJACS 2002 Page 61/75

. AJACS - Applying Java to Automotive Control Systems
Arcs Y Final Report - Concluding Paper V2.0

JNI EXPORT void JNI CALL Java_myCl ass_myNat i veMet hod
(JNI Env *env,
j obj ect obj) {

/1l step 1 : get class

jclass cls = (*env)-Cet Obj ect C ass(env, obj);
jfieldlD fid;

jint val ue;

/1l step 2 : get field id
fid = (*env)-CGetFieldl D(env, cls, "foo", "I");
if (fid ==0) { return; } // Check reference consistency

/1l step 3 : get field value
value = (*env)-Cet Obj ect Fi el d(env, obj, fid);

4.6.1.5 JINI Accessof C Datain Java components
Reciprocally, Java components may wish to access C structures,

The following types of dataare defined in C :
» integra types char,int,long int, .). The possble operations are read and

write.
= araysof integra typesor of C structures
= Cdructures

The following provides an example

/1l integral types
char ¢=32;

int i=12032;

long int | =543214,

// C structure
struct foo {

int fieldl;
char field2
long int field3;
JR
/1 arrays

int a[3] = {1,2,3} // of integral types
struct foo s[2] = {{1234, 4,453244}, {4321,5,-3556433}} // of structures

JINI does not support direct access to C data. Instead, it is expected that Functions (usually
cdled accessors) are provided to read and write data.

|ST-1999-12504 © consortium AJACS 2002 Page 62/75

. AJACS - Applying Java to Automotive Control Systems
Arcs Y Final Report - Concluding Paper V2.0

4.6.1.6 JINI Handling Java Featuresin C components

C components can aso handle some Java features.

Exception Throwing

This mechanism is interesting to propagate an error that occurred during the native code
execution to the caling Java method.

In INI, the C code calls a NI function to create and throw a Java Exception object:

newkExcCl s = (*env)->Fi ndCl ass(env, "nyException");

if (newkxcCls == 0) {
/* Unable to find the new exception class, give up. */
return;

}
(*env) - >Thr owNew(env, newexcCls, "ny Exception thrown from C code");

Exception Handling

This mechanism is interesting to treat an error that occurred during the execution of a Java
method.

NI gives some smple services to handle exceptions raises in a Java method call: the C code
cdlsaJNI function to know if an exception has occurred:

exc = (*env)->ExceptionCccurred(env);
if (exc) {

Synchronisation.

The C code executes portions of code that need to be synchronised according to the Java
gynchronized semantics. In the usud JINI, this is done vey gSmply with the
Moni t or Ent er/Moni tor Exit sevices For example the following Java
synchr oni zed block:

synchroni zed (syncObject) {
/'l synchroni sed code

}

is synchronised with the following native block (supposing obj contains the reference to the
sameobjectassyncObj ect):

IST-1999-12504 © consortium AJACS 2002 Page 63/75

AJACS - Applying Java to Automotive Control Systems
Final Report - Concluding Paper V2.0

(*env)->Moni tor Enter(env, obj)
/'l synchroni sed code
(*env)->Moni torExit(env, obj)

Object creation

The usud JNI is rich enough to dlow you to create objects directly from the native code,
through the NewObj ect service. Let's suppose you want to creste an instance of the
following Javaclass

class MyCl ass {

int foo;

MyClass(int i) {

foo = i;

}

}
then, you will write a native code looking as the following:

jclass cls;
jmethodld md;
cls = FindC ass(env, “MyCl ass”); // obtain reference of the class
md = GetMethodl D(env, cls, “<init>", (V)I); // obtain constructor ID
obj = Newbject(env, cls, md, 42); // allocate and construct object

which has exactly the same meaning as a Java code like:

| MyCl ass obj = new MyCl ass(42);

4.6.2 Intended Use in Embedded Systems

4.6.2.1 Introduction

Typical Use

It is expected that future embedded systems gpplications will have well defined specific needs
concerning native interface.

One case would be when the entire application is nearly entirely written in Java, with some parts
remaining coded in C. Typicaly :

= All the gpplication is written in Java, while run-time support (OS, drivers) isin C. Some
part of the run-time could aso be in Java, asthis could be the case with drivers.
= Native interface is needed for specific purposes :
gpplication cdl from C to Javain the following cases for instance :
the run-time caling gpplication initidisation routines or sarting Java threads,
interrupt routines calling some specific Java methods®
application call from Javato C for specific services such as 1O sarvices.

8

Provided the Java code is compatible with timing constraints associated with the interrupt.

|ST-1999-12504 © consortium AJACS 2002 Page 64/75

,\ N AJACS - Applying Java to Automotive Control Systems
)

AILCS Y Final Report - Concluding Paper V2.0

Therefore, involved C components usualy need standard programming interfaces which are not
Specific to Java programming interfaces.

Typical Native Interface Profiles

It is consequently expected that embedded systems need a subset of the full set of JNI features.
There could be different such subsets of profiles. For instance

= Thefull INI profile. Native methods can mimic the entire sesmantics of Java. For instance a
native method can raise exceptions, can create objects, can access objects fieds and
methods. In order to guarantee portability of native methods (for instance written in C), al
information about interface parameters are obtained and described dynamicaly in the form
of strings.

= Full Java support with no dynamic discovery of interfaces. The full semantics of the Java
language is supported. On the other hand dynamic discovery of interface parameters is not
supported. Instead, some other binding techniques such as configuration directive at the
development kit level. This gpproach is obvioudy dependent on the underlying devel opment
platform. It can only be portable if a consensus for a standard is reached.

= C functions support with no dynamic discovery of interfaces. Native methods only support
parameters types that are defined in the C programming language. Supported parameters
could be integral types, or possibly reference to objects, in the case the use of referencesis
limited (e.g. to storage)

Typical Constraints

As, embedded systems have specific requirements in terms of initidisation and generation, redl-
time condraint, memory needs which may influence native interface mechanisms :

It is often preferred or even required in the case of datic systems that no dynamic
initidisation takes place

The native interface should have red-time behaviour if used in portion of codes that have
redl-time congtraints

Memory congraints could adso have an impact (for instance it would be too coglly to
declare stringsin the code).

4.6.2.2 MechanismtoCall C

The sdection of a suitable mechanism to perform the cdling of a Java native method depends
on two aspects, the binding mechanism and the parameter types

Binding Mechanism

A mechanism is needed to associate a Java native method to a C function. Many approaches
are available. They depend on decisons taken at the level the development tool and specificaly
the compiler, and on criteria such as portability or performance . Let us take two examples:

The compiler could generate a cdl to one single C function (let us cdl it Nat i veMet hod)
with a parameter which identifies the native method. This function will then retrieve the function

IST-1999-12504 © consortium AJACS 2002 Page 65/75

,\ . AJACS - Applying Java to Automotive Control Systems
A]A(B{YE Final Report - Concluding Paper V2.0

addresses and the right parameters in order to cdl the find C function (let us cdl it Foo). A
saviceis avalableto the Nat i veMet hod C code to retrieve the C function address and
related parameters (let uscdl if Ret r i eve). Hereisthe resulting code

Voi d nativenet hod(tNativeMet hodld NativeMethodld) {
Retrieve(NativeMethodl f, &FunctionAd, &ParaneterAd);

/* call function */
*Functi onAddr ess(Par anmet er Ad)

The performance of this mechanismsisinfluenced by the following :

Overhead to update the table. The table could be updated at startup time or just before
invoking Nat i veMet hod.

Overhead to search the table when Ret ri eve is cdled. If the key is the method
name that some hash table search could be used. While a hash table would yield a very
efficient O(1) type of performance, it can lead to a O(N) worst case performance,
something not acceptable for embedded systems with redl-time congtraint. On the other
hand, if the key is an index, then a direct indexation with an O(1) performance is
guaranteed.

Thisfirst gpproach is suited to red-time systems which do not require static initidisation, if O(1)
performance is guaranteed in the cal mechanism

A second gpproach could be the following : the compiler generates a call to a specific C
function with the right parameters. The association between the Java native method and the C
function is done a generation time by the compiler or/and associated tools. Again there are
severd posshilities:
The association could be explicitly specified by the programmer, eg. through a
configuration file given as an entry for the code generator (for each C function, the name
of aJavamethod is given).
The associdion could be implicit as it reies on common conventions between the
programmer and the code generator provider. Example: use of naming conventions (a
static method is declared that can easily be deducted of the name in C language).

This second approach is suitable to embedded static systems.

Parameter Types
As gated in the introduction, it is believed that only standard parameters are needed :

* integra types are straightforward to support because of the direct correspondence with C
types.

IST-1999-12504 © consortium AJACS 2002 Page 66/75

AJACS - Applying Java to Automotive Control Systems
Final Report - Concluding Paper V2.0

Reference to arrays could be useful so that a C function can read and modify their content®.
Storing and object reference and returning it could aso be useful. Accessing fieds of an
object isfairly complex, but as we dready said, probably not necessary.

4.6.2.3 Mechanismsto Call Java

The sdection of a suitable mechanism to perform the caling of a Java method from a C function
depends on two aspects, the binding mechanism and the handling of virtua methods.

Binding Mechanism

Similarly to the section describing the call from Javato C, gpproaches to associate a C function
to a Java method will depend on the level of handling performed at generation time versus at
run-time.

We saw that an approach such as NI (see 4.6.1.3) involves 3 service cdls to get a reference
to the class of an object, then to get the method of an object and then to invoke the method.
This gpproach is suited to rea-time systems provided internd search dgorithms are achieved in
O(1) performance. Thisis generaly not the case (we rather have O(N) worst case).

Alternatively an gpproach involving configuration data could eiminate search dgorithm. Thisis
the recommended approach for embedded static systems. Note that a Java compiler would
have to know that a given Java method can be caled from C in order to avoid some compiler
optimisation such as inlining some method: a sufficient property would be to declare such
methodsaspubl i c.

Virtual Method

A mechanism for virtud method call, i.e. invoking the right method in the inheritance scheme is
involved. In NI, a service to obtain a method identification is available once the class of the
object is known (see 4.6.1.3, sarvice Get St at i cMet hodl d). Other implementations
would have to provide asmilar service or possibly accessto the virtua method table.

In red-time systems, it would be desirable that the overhead of such search be bounded. In
embedded datic systems, it would be expected that no such search is performed, and that
rather a static association be calculated. Such static association could be obtained as follows

» Possible ambiguities on which method implementation is to be caled in an inheritance tree is
removed, for example: only fi nal static native methods can be cdled and
they shdl have a body. The programmer shdl cdl them directly using the most precise class
which implements the method. This can leed to very efficient implementation (no search for
the method).

= Some programming practices are enforced in the use of inheritance so that the right method

9

Thisfunctionality, if allowed, may have an impact on the compilers optimisation capabilities: the compiler should be aware of
the possible modification of datafrom C so that he will not make wrong assumptions on data and keep out-of-date values.

IST-1999-12504 © consortium AJACS 2002 Page 67/75

,\ . AJACS - Applying Java to Automotive Control Systems
A]A(B{YE Final Report - Concluding Paper V2.0

can dways be determined daticdly, such as only adlowing datic methods. Note that
enforcing static cal with no inheritance is not a red redriction as the Java programmer
could introduce some code to dlow for such operation. For example, assume that he
wishesto cdl thebar method of the following dass:

class Foo {
int bar(byte a);
}

In order to achieve this, the programmer can introduce the following class.

class MyStubs {
static int stub_bar(Foo f, byte a)

{

return f.bar(a);

}

Then he can accessthe bar () method of aFoo object myf oo viathe following call™ :

result = MyStubs. stub_bar (nyfoo, a);
instead of :
result = nyfoo.bar(a);

4.6.2.4 Accessing Java Datain C Components

The sdection of a suitable mechanism to perform access to Java Data in C components
depends on the following aspects, matching data format, managing object referencing, and
managing access to shared data.

Matching Data Format

Matching of Data Format is not straightforward because (1) Java does not specify the physica
representation of its objects and (2) C does not specify it ether (even though the underlying
physica representation is generdly farly sraightforward).

Thefollowing issues have to be taken into account :

» Javaintegra types data representations are well defined, i.e. Java basic types have a fixed
length whereas dl the C types can differ from one platform to another.

= Mapping of structures is not sraightforward. Padding issues will typicdly take place as it
will probably the case in the following example.

1 Note that even if though this technique does not look convenient, NI programmers are used to it.

IST-1999-12504 © consortium AJACS 2002 Page 68/75

,\ N AJACS - Applying Java to Automotive Control Systems
Arcs Y Final Report - Concluding Paper V2.0

struct Date {
byt e day;
i nt year;

This is the reason why JNI proposes a procedure interface where each access necessitates 3
cdls (see 4.6.1.4). While this is guarantying portability of C components, this approach does
not alow for efficient access to data. In embedded systems, it would be more appropriate to
have a Java compiler which is well integrated with a C compiler so that the matching of data
formatsis straghtforward.

Managing Object Reference

The fact that a C component may use an object reference may have an impact on the way such
references are handled in the Java run-time in terms of object reference lifetime. The fact that a
C component is using or event storing an object reference must be known to the Java run-time
S0 that the object reference does not disappear (e.g. because the reference is no longer used in
the Java program, and consequently the object has been reclaimed).

In INI, the fact that object references are transmitted as parameters guarantee that during the
cal, the object will not be garbage collected. On the other hand, if the C component stores the
reference for future use and returns, then there is an issue of marking the reference. This would
be possible if some native interface primitive is available for this.

Access to Shared Data

The storage of object reference may jeopardize data integrity is concurrent access may Ooccur,
from a Javathread or interrupt routine on one side and from a C thread or interrupt routine on
theother sde. To handle that, C components should have access to the mutua excluson
sarvices used internally by Java threads.

4.6.2.5 Accessing C Datain Java Components

The sdlection of a suitable mechanism to perform access to C Data in C Java depends on the
mapping approach, the matching of data format, and on other implementation congderations.

Overdl, dlowing access to C data in Java component could have an effect on portability of C
code.

Mapping
Severa approaches are possible to make C data accessible to the Javaworld:

» Accessthe variable viaa native function. This solution has a performance cost that could be
incompatible with embedded systems requirements, unless C macros are used instead of C
procedures. Such access could be achieved asfollows :

IST-1999-12504 © consortium AJACS 2002 Page 69/75

,\ . AJACS - Applying Java to Automotive Control Systems
A]A(B{YE Final Report - Concluding Paper V2.0

Access to the C variable through a C function written by hand by the developer: thisis
the smplest solution. This is the gpproach used by JNI.
Automatic generation of the desired access functions a compile time. This necessitate
support from the development tool.

= Makethe C varigble gppear like a Java "variable' or object. Different solutions can be dso

be considered such as:

One object creasted per C variable. This approach could be an overkill in many
embedded systems. It is not even obvious that this kind of solution would be wise in
terms of software engineering, except in specific cases such as accessing a C array of
bytes as a Java array of bytes.

byte tab[12];
tab = arrayAccess(C_tab_address);

One particular Java class is created which has one field per C variable. This gpproach
look reasonable

Matching Data Format
Seeandydsin 4.6.2.4.

I mplementation Considerations
Other implementation aspects would have to be taken into account

» Typeof C data shared. It islikely that only static C data is made available (locd variables
for example are not meant to be accessible)

» A draghtforward manner to match smple data types. For ingance a convention could
consist in declaring dl the accessible native data with specid types such as*jint”, “joyte”...

» Access mechanims. C data could be accessed in the Java world through some kind of
“proxy” (i.e. aJava variable which represent the native one).

4.6.2.6 Handling Java Featuresin C Components

Exception Throwing

Allowing C components to throw exceptions implies the availability of some run-time primitives
It could be assumed that such exception are intended to be caught by Java code. Some
programming guidelines would have to be provided. NI is providing such festure. In
embedded systems, the feature would depends on the run-time model for exception handling. It
could thus prevent C component to be portable (unless some standard for this emerge).
Further, the verification that the C component conforms to guiddines for exception throwing is
not obvious (maybe it could require a preprocessor at the C levd).

Exception Handling

IST-1999-12504 © consortium AJACS 2002 Page 70/75

,\ . AJACS - Applying Java to Automotive Control Systems
ARCS Y Final Report - Concluding Paper V2.0

-

Concerning exception catching, the need for this functiondity has to be well evauated. It could

be assumed that because of the limited call from C to Java, support will be limited to the

following :

= when the underlying OS has dtarted a thread of caled a method, then it will catch, dl
implicit exceptions

= when an interrupt cals a method which generate an exception, then it will catch al implicit
exceptions.

In other words, the C code does not propagate exceptions. If it was not the case then further

issues would have to be solved such as:

= usng amechaniamto search for therightt ry block. We saw in the section on exception
that this mechanism is compiler dependent.

= digtinction possible between "Unchecked" (throws clause is not mandatory) / "Checked"
exceptions

Supporting Synchronisation

Concerning synchronization, it is expected that the underlying OS offer services to handle

synchronized methods. This would alow C threads and Java threads to concurrently access

synchronised methods. NI is providing such features. In embedded systems, the festure would

depends on the run-time API. For ingtance in OSEK one could use the GetResource and

LeaveResource primitives. Unless some agreement on the AP, it would prevent C components
to be portable.

4.6.3 Recommendations

46.3.1 MechanismtoCall C

Concerning binding, the gpproach where the caled C function is automaticaly deducted and
gaticaly bound by the Java compiler is preferred.

Concerning parameter type, it is recommended to support

* integrd types
= object references for storage and restitution
= araysof the above types.

4.6.3.2 Mechanism to Call Java

It is recommended to use a binding mechanism based on configuration data.

It is dso recommended that only cdl to static method are dlowed in order to avoid virtua
method search

|ST-1999-12504 © consortium AJACS 2002 Page 71/75

,\ . AJACS - Applying Java to Automotive Control Systems

ARCS Y Final Report - Concluding Paper V2.0

-

4.6.3.3 Accessing Java datain C Components

It is recommended not to use it, because of the high cost involved in C components which are
typicdly intended to be congtrained (in performance or in memory).

4.6.3.4 Accessing C Data in Java components

If the application makes extensve use of system variables, I/0O ports, or any memory area with
afixed address for example, the Javato C compiler should support an efficient access to data,
at least for integral types and arrays of integral types. A possible solution would be the use of C
macros.

4.6.3.5 Handling Java Featuresin C Components

Throwing Exception

Exceptions throwing in C code should be supported. Programming guiddlines should be
provided. APIs should be provided by the underlying run-time. As this APl depends on the
compiler, it is recommended that some standardisation takes place.

Handling Exception

It is recommended to support exception catching but not exception propagation.

Synchronisation

An AP should be provided to support synchronisation between C and Java threads. This API
should be independent from the underlying OS.

|ST-1999-12504 © consortium AJACS 2002 Page 72/75

,\ . AJACS - Applying Java to Automotive Control Systems
A]A(B{YE Final Report - Concluding Paper V2.0

5. Lessons Learned, Recommendations

The AJACS project dlowed an in-depth andysis of the feagbility to use Java for embedded
systems. We now have a number of recommendations to provide to the Java and embedded
systems community in order to be able to use Java for embedded systems in the future. Some
of the recommendations were not followed by AJACS, for a number of reasons :

» Recommendations concern topics that were not covered by AJACS such as debugging

» Recommendations concern issues that were discovered within the project such as the
necessity to have a preprocessor or Smilar mechanism for systlem programming

» Recommendations concern return on experience from the project which made the
consortium change its opinion

The below tables summarize those recommendations.

Development Aspects

Type of Issue Recommendation

Development Environment Change the semantics of root classes

Do not use standard libraries

Have a preprocessor or suitable compiler features
Have a debugging interface

System Programming Extension/Support of constants, controlled
inlining, unsigned types, bit management
Extension to support interrupt management

Real-Time Support

Type of Issue Recommendation
Predictability No garbage collection
Programming practice to limit inheritance
Synchronization Change the Java Memory Model
Use synchronized for locks
Support locks in interrupt routines

Support of Exception
Type of Issue Recommendation
Software Engineering Structured programming validation
Default handler validation
Real-Time Behavior Exception handling overhead validation
Exception handling response time validation
Memory Needs No exception instantiation in the throw statement
of applications
Likewise for run-time

Initialization
Type of Issue Recommendation
Class Initialization Download all classes at compile-time

IST-1999-12504 © consortium AJACS 2002 Page 73/75

AJACS - Applying Java to Automotive Control Systems
Final Report - Concluding Paper V2.0

Execute class initialization during the startup
phase / Handle class dependencids

Obiject Initialization

Predefined object approach

Constants in ROM

Further investigation Neede

Memory Management

Type of Issue

Recommendation

Limited Amount of Memory

In case downloading is nheeded use JEFF

Static Systems

Use Native Code

Programming practices for object creation
JVM traceability

Objects in stacks

See initialization

Hard Real-Time Systems

See garbage collection
Use Memory Banks

Native Interface

Type of Issue

Recommendation

Mechanism to all C

Automatic binding

Parameters limited to integral types, object
references and arrays of integral types and object
references

Mechanism to call Java

Binding mechanisms based on configuration data
Call to static methods only

Accessing Java Data

Not recommended

Accessing C Data

Some efficient access should be made available
possible through C macros

Handling Java features in C

Exception throwing in C should be supported
Exception catching in C should be supported
Synchronisation between C and Java should be
supported

IST-1999-12504 © consortium AJACS 2002

Page 74/75

AJACS - Applying Java to Automotive Control Systems
Final Report - Concluding Paper V2.0

6. References

[D6] AJACS Architecture definition verson 1.0. D6 ddiverable. AJACS Consortium,
June 14™ 2001.

[Gupta02] Rajesh Gupta. U.C.Irvine. Winter 2002.
“http:/Aww1.ics.uci .edu/~rguptalics212/w2002/intro.pdf”

[HoareB1] The Emperor's Old Cloths. The 1980 Turing Award Lecture. C.A.R Hoare.
CACM. February 1981

[Java Language Specification]
The Java Language Specification. Second Edition. James Goding, Bill Joy, Guy
Steele, Gilad Bracha. Addison-Wedey, 2000.

[JEFF] JEFF File Format Specification v1.0. J Consortium. March 2002. 1ISO/IEC
20970.

[INI] Essential INI: Java Native Interface. Rob Gordon. Prentice-Hall, 1998.

[VM Specification]

The Java Virtud Machine Specification. Tim Lindholm, Frank Yelin. 1997.
Addison-Wedey.

[Lea 96-99] Concurrent Programming in Java: Design Principles and Patterns. Doug Lea
1996-99. Addison-Wedey.

[OSEK] OSEK-VDX red-time kernel standard. “http://www.osek-vdx.org’

[Pughl Fixing the Java Memory Modd. Bill Pugh.1999.

“ http:/Aww.cs.umd.edu/~pugh/jmm. pdf”

[Redl-Time Core Specification] “Redl-Time Core Extensons for the Java Platform - Draft 1.0.14"
.J Consortium. May 30, 2000. This document is available on the website of the J
consortium : "hitp://mww.j-consortium.org/rtjwg/rtce.1.0.14.pdf"

[RTS] JSR-000001 The Red-Time Specification for Java. The Red-Time for Java
Expert Group. 2001. Addison Wedey. This document is available on the website
of the Redl-Time for Java Expert Group: “ http://Aww.rtj.org/rtg-V 1.0.pdf”

[Sun exception] Wheat's an Exception and Why Do | Care?

“ http://java.sun.com/docs/books/tutoria/essential/exceptions/definition.html”

[Venners 98] Object Initidisation in Java Bill Venners. JavaWorld, March 1998.

IST-1999-12504 © consortium AJACS 2002 Page 75/75

